科研成果详情

发表状态已发表Published
题名Contrastive semantic disentanglement in latent space for generalized zero-shot learning
作者
发表日期2022-12-05
发表期刊Knowledge-Based Systems
ISSN/eISSN0950-7051
卷号257
摘要

The target of generalized zero-shot learning (GZSL) is to train a model that can classify data samples from both seen categories and unseen categories under the circumstances that only the labeled samples from seen categories are available. In this paper, we propose a GZSL approach based on conditional generative models that adopts a contrastive disentanglement learning framework to disentangle visual information in the latent space. Specifically, our model encodes original and generated visual features into a latent space in which these visual features are disentangled into semantic-related and semantic-unrelated representations. The proposed contrastive learning framework leverages class-level and instance-level supervision, where it not only formulates contrastive loss based on semantic-related information at the instance level, but also exploits semantic-unrelated representations and the corresponding semantic information to form negative sample pairs at the class level to further facilitate disentanglement. Then, GZSL classification is performed by training a supervised model (e.g, softmax classifier) based only on semantic-related representations. The experimental results show that our model achieves state-of-the-art performance on several benchmark datasets, especially for unseen categories. The source code of the proposed model is available at: https://github.com/fwt-team/GZSL.

关键词Contrastive learning Feature disentanglement Generalized zero-shot learning Generative model Wasserstein GAN
DOI10.1016/j.knosys.2022.109949
URL查看来源
收录类别SCIE
语种英语English
WOS研究方向Computer Science
WOS类目Computer Science, Artificial Intelligence
WOS记录号WOS:000894032800015
Scopus入藏号2-s2.0-85140141038
引用统计
被引频次:9[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符https://repository.uic.edu.cn/handle/39GCC9TT/10153
专题理工科技学院
通讯作者Fan, Wentao
作者单位
1.Department of Computer Science,Beijing Normal University-Hong Kong Baptist University United International College,Zhuhai,Guangdong,China
2.Department of Computer Science and Technology,Huaqiao University,Xiamen,China
3.BNU-UIC Institute of Artificial Intelligence and Future Networks,Beijing Normal University (BNU),Zhuhai,China
4.Guangdong Key Lab of AI and Multi-Modal Data Processing,BNU-HKBU United International College (UIC),Zhuhai,Guangdong,China
第一作者单位北师香港浸会大学
通讯作者单位北师香港浸会大学
推荐引用方式
GB/T 7714
Fan, Wentao,Liang, Chen,Wang, Tian. Contrastive semantic disentanglement in latent space for generalized zero-shot learning[J]. Knowledge-Based Systems, 2022, 257.
APA Fan, Wentao, Liang, Chen, & Wang, Tian. (2022). Contrastive semantic disentanglement in latent space for generalized zero-shot learning. Knowledge-Based Systems, 257.
MLA Fan, Wentao,et al."Contrastive semantic disentanglement in latent space for generalized zero-shot learning". Knowledge-Based Systems 257(2022).
条目包含的文件
条目无相关文件。
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Fan, Wentao]的文章
[Liang, Chen]的文章
[Wang, Tian]的文章
百度学术
百度学术中相似的文章
[Fan, Wentao]的文章
[Liang, Chen]的文章
[Wang, Tian]的文章
必应学术
必应学术中相似的文章
[Fan, Wentao]的文章
[Liang, Chen]的文章
[Wang, Tian]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。