发表状态 | 已发表Published |
题名 | On the continuity of pathwise solutions to langevin equations in infinite dimensions |
作者 | |
发表日期 | 2004 |
发表期刊 | Acta Applicandae Mathematicae
![]() |
ISSN/eISSN | 0167-8019 |
卷号 | 83期号:3页码:289-312 |
摘要 | We fix a rich probability space (Ω, ℱ P). Let (ℍ, ∥·∥) be a separable Hilbert space and let μ be the canonical cylindrical Gaussian measure μ on ℍ. Given any abstract Wiener space (ℍ, double-sturck B sing, μ) over ℍ, and for every Hilbert-Schmidt operator T: ℍ ⊂ double-sturck B sing, → ℍ which is (|·|, ∥·∥)-continuous, where |·| stands for the (Gross-measurable) norm on double-sturck B sing, we construct an OrnsteinUhlenbeck process ξ: (Ω ℱ P) × [0, 1] → (double-sturck B sing, |·|) as a pathwise solution of the following infinite-dimensional Langevin equation dξt=db + T(ξ)dt with the initial data ξ = 0, where b is a double-sturck B sing-valued Brownian motion based on the abstract Wiener space (ℍ, double-sturck B sing, μ). The richness of the probability space (Ω, ℱ, P) then implies the following consequences: the probability space Ω is independent of the abstract Wiener space (ℍ, double-sturck B sing, μ) (in the sense that (Ω, ℱ, P) does not depend on the choice of the Gross-measurable norm |·|) and the space C consisting of all continuous double-sturck B sing-valued functions on [0,1] is identical with the set of all paths of ξ. Finally, we present a way to obtain pathwise continuous solutions ξ: dξ = √|α| β db + α · ξ dt with initial data ξ = 0. where α, β ε R, α ≠ 0 and 0 < β. |
关键词 | Abstract wiener spaces Continuity of pathwise solutions Hilbert-Schmidt operators Langevin equations Loeb measure spaces Nonstandard analysis Ornstein-Uhlenbeck processes Rich probability spaces |
DOI | 10.1023/B:ACAP.0000039016.60135.67 |
URL | 查看来源 |
收录类别 | SCIE |
语种 | 英语English |
WOS研究方向 | Mathematics |
WOS类目 | Mathematics, Applied |
WOS记录号 | WOS:000223483100005 |
Scopus入藏号 | 2-s2.0-4344696182 |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | https://repository.uic.edu.cn/handle/39GCC9TT/10538 |
专题 | 个人在本单位外知识产出 |
通讯作者 | Osswald, Horst |
作者单位 | 1.Mathematisches Institut,LMU-Munchen,Theresienstr. 39,D-80333 München,Germany 2.Department of Mathematics,University of Wales Swansea,Singleton Park,Swansea SA2 8PP,United Kingdom |
推荐引用方式 GB/T 7714 | Osswald, Horst,Wu, Jianglun. On the continuity of pathwise solutions to langevin equations in infinite dimensions[J]. Acta Applicandae Mathematicae, 2004, 83(3): 289-312. |
APA | Osswald, Horst, & Wu, Jianglun. (2004). On the continuity of pathwise solutions to langevin equations in infinite dimensions. Acta Applicandae Mathematicae, 83(3), 289-312. |
MLA | Osswald, Horst,et al."On the continuity of pathwise solutions to langevin equations in infinite dimensions". Acta Applicandae Mathematicae 83.3(2004): 289-312. |
条目包含的文件 | 条目无相关文件。 |
个性服务 |
查看访问统计 |
谷歌学术 |
谷歌学术中相似的文章 |
[Osswald, Horst]的文章 |
[Wu, Jianglun]的文章 |
百度学术 |
百度学术中相似的文章 |
[Osswald, Horst]的文章 |
[Wu, Jianglun]的文章 |
必应学术 |
必应学术中相似的文章 |
[Osswald, Horst]的文章 |
[Wu, Jianglun]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论