科研成果详情

发表状态已发表Published
题名Uncertainty quantification in molecular property prediction through spherical mixture density networks
作者
发表日期2023-08-01
发表期刊Engineering Applications of Artificial Intelligence
ISSN/eISSN0952-1976
卷号123
摘要

As uncertainty quantification is crucial for determining undesirable inputs and improving decisions made by a system to acquire accurate evaluations, it has received much attention in recent years. Motivated by the fact that probability is one of the most effective ways to estimate uncertainty, in this work we propose an effective probabilistic model for quantifying predictive uncertainty in the task of predicting chemical molecular properties. Our model is formulated by developing a spherical mixture density network that is composed of von Mises-Fisher kernel distributions to model graph-structured molecule representations. Furthermore, an ensemble framework for spherical mixture density networks is developed, which can yield high quality predictive uncertainty estimates and obtain better confidence intervals reflecting the sources of these uncertainties in predictions. The effectiveness of our approach in modeling the output predictive uncertainty is validated through empirical analysis on molecular property prediction tasks with two publicly available chemical molecule data sets. Comparing with the current state-of-the-art baselines, our model can better model predictive uncertainty in terms of higher log-likelihood of the data, and reveal that there might be more than one acceptable chemical property associated with an input molecule representation.

关键词Graph structure data Mixture density network Molecular property predictions Uncertainty quantification Von mises-fisher distribution
DOI10.1016/j.engappai.2023.106180
URL查看来源
收录类别SCIE
语种英语English
WOS研究方向Automation & Control Systems ; Computer Science ; Engineering
WOS类目Automation & Control Systems ; Computer Science, Artificial Intelligence ; Engineering, Multidisciplinary ; Engineering, Electrical & Electronic
WOS记录号WOS:000967705500001
Scopus入藏号2-s2.0-85150917928
引用统计
被引频次:5[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符https://repository.uic.edu.cn/handle/39GCC9TT/10801
专题理工科技学院
通讯作者Fan, Wentao
作者单位
1.Department of Computer Science, Beijing Normal University-Hong Kong Baptist University United International College, Zhuhai, Guangdong, China
2.Department of Computer Science and Technology, Huaqiao University, Xiamen, China
3.BNU-UIC Institute of Artificial Intelligence and Future Networks, Beijing Normal University, Zhuhai, Guangdong, China
4.Guangdong Key Lab of AI and Multi-Modal Data Processing, BNU-HKBU United International College (UIC), Zhuhai, China
5.Guangdong Provincial Key Laboratory of Interdisciplinary Research and Application for Data Science, BNU-HKBU United International College, Zhuhai, China
第一作者单位北师香港浸会大学
通讯作者单位北师香港浸会大学
推荐引用方式
GB/T 7714
Fan, Wentao,Zeng, Lidan,Wang, Tian. Uncertainty quantification in molecular property prediction through spherical mixture density networks[J]. Engineering Applications of Artificial Intelligence, 2023, 123.
APA Fan, Wentao, Zeng, Lidan, & Wang, Tian. (2023). Uncertainty quantification in molecular property prediction through spherical mixture density networks. Engineering Applications of Artificial Intelligence, 123.
MLA Fan, Wentao,et al."Uncertainty quantification in molecular property prediction through spherical mixture density networks". Engineering Applications of Artificial Intelligence 123(2023).
条目包含的文件
条目无相关文件。
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Fan, Wentao]的文章
[Zeng, Lidan]的文章
[Wang, Tian]的文章
百度学术
百度学术中相似的文章
[Fan, Wentao]的文章
[Zeng, Lidan]的文章
[Wang, Tian]的文章
必应学术
必应学术中相似的文章
[Fan, Wentao]的文章
[Zeng, Lidan]的文章
[Wang, Tian]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。