科研成果详情

发表状态已发表Published
题名Transformer-based contrastive learning framework for image anomaly detection
作者
发表日期2023-10-01
发表期刊International Journal of Machine Learning and Cybernetics
ISSN/eISSN1868-8071
卷号14期号:10页码:3413-3426
摘要

Anomaly detection refers to the problem of uncovering patterns in a given data set that do not conform to the expected behavior. Recently, owing to the continuous development of deep representation learning, a large number of anomaly detection approaches based on deep learning models have been developed and achieved promising performance. In this work, an image anomaly detection approach based on contrastive learning framework is proposed. Rather than adopting ResNet or other CNN-based deep neural networks as in most of the previous deep learning-based image anomaly detection approaches to learn representations from training samples, a contrastive learning framework is developed for anomaly detection in which Transformer is adopted for extracting better representations. Then, we develop a triple contrastive loss function and embed it into the proposed contrastive learning framework to alleviate the problem of catastrophic collapse that is often encountered in many anomaly detection approaches. Furthermore, a nonlinear Projector is integrated with our model to improve the performance of anomaly detection. The effectiveness of our image anomaly detection approach is validated through experiments on multiple benchmark data sets. According to the experimental results, our approach can obtain better or comparative performance in comparison with state-of-the-art anomaly detection approaches.

关键词Anomaly detection Contrastive learning Transformer Triple contrastive loss
DOI10.1007/s13042-023-01840-7
URL查看来源
收录类别SCIE
语种英语English
WOS研究方向Computer Science
WOS类目Computer Science, Artificial Intelligence
WOS记录号WOS:000980786000001
Scopus入藏号2-s2.0-85158147574
引用统计
被引频次:4[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符https://repository.uic.edu.cn/handle/39GCC9TT/10900
专题理工科技学院
通讯作者Fan, Wentao
作者单位
1.Department of Computer Science,Beijing Normal University-Hong Kong Baptist University United International College (BNU-HKBU UIC),Zhuhai,Guangdong,China
2.Guangdong Provincial Key Laboratory of Interdisciplinary Research and Application for Data Science,BNU-HKBU United International College,Zhuhai,China
3.Department of Computer Science and Technology,Huaqiao University,Xiamen,China
第一作者单位北师香港浸会大学
通讯作者单位北师香港浸会大学
推荐引用方式
GB/T 7714
Fan, Wentao,Shangguan, Weimin,Chen, Yewang. Transformer-based contrastive learning framework for image anomaly detection[J]. International Journal of Machine Learning and Cybernetics, 2023, 14(10): 3413-3426.
APA Fan, Wentao, Shangguan, Weimin, & Chen, Yewang. (2023). Transformer-based contrastive learning framework for image anomaly detection. International Journal of Machine Learning and Cybernetics, 14(10), 3413-3426.
MLA Fan, Wentao,et al."Transformer-based contrastive learning framework for image anomaly detection". International Journal of Machine Learning and Cybernetics 14.10(2023): 3413-3426.
条目包含的文件
条目无相关文件。
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Fan, Wentao]的文章
[Shangguan, Weimin]的文章
[Chen, Yewang]的文章
百度学术
百度学术中相似的文章
[Fan, Wentao]的文章
[Shangguan, Weimin]的文章
[Chen, Yewang]的文章
必应学术
必应学术中相似的文章
[Fan, Wentao]的文章
[Shangguan, Weimin]的文章
[Chen, Yewang]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。