科研成果详情

题名Predicting outcomes of active sessions using multi-action motifs
作者
发表日期2019-10-14
会议名称19th IEEE/WIC/ACM International Conference on Web Intelligence (WI)
会议录名称Proceedings - 2019 IEEE/WIC/ACM International Conference on Web Intelligence, WI 2019
ISBN9781450369343
页码9-17
会议日期OCT 13-17, 2019
会议地点Thessaloniki, GREECE
摘要

Web sites and online services increasingly engage with users through live chats to provide support, advice, and offers. Such approaches require reliable methods to predict the user’s intent and make an informed decision when and how to intervene during an active session. Prior work on predicting purchase intent involved clickstream data mining and feature construction in an ad-hoc manner with a moderate success (AUC 0.70 range). We demonstrate the use of the consumer Purchase Decision Model (PDM) and a principled way of constructing features predictive of the purchase intent. We show that the Logistic Regression (LR) classifiers, trained with multi-action motifs, perform on par with the state-of-the-art LSTM sequence model achieving comparable AUC (0.95 vs 0.96) and performing better for the sparse purchase sessions, with higher recall (0.85 vs 0.61) and higher F1 score (0.73 vs 0.66). While LSTM performs better than LR in terms of weighted averages of F1, precision, and recall, it requires 7 times longer to train and offers no insights about the predictive model in terms of the user actions and the purchase decision stages. The LR predictors are robust and effective in simulating real-time interventions, achieving F1 of 0.84 and AUC of 0.85 after observing only 50% of an active session. For non-purchase sessions that leaves room for live intervention, on average within 8 actions before the session ends.

关键词Action motifs Consumer e-purchase Purchase sessions User behavior User modelling
DOI10.1145/3350546.3352495
URL查看来源
收录类别CPCI-S
语种英语English
WOS研究方向Computer Science
WOS类目Computer Science, Artificial Intelligence
WOS记录号WOS:000519076200002
Scopus入藏号2-s2.0-85074793312
引用统计
被引频次:5[WOS]   [WOS记录]     [WOS相关记录]
文献类型会议论文
条目标识符https://repository.uic.edu.cn/handle/39GCC9TT/10967
专题个人在本单位外知识产出
通讯作者Lin, Weiqiang
作者单位
1.International Doctoral Innovation Centre,University of Nottingham,Ningbo,China
2.School of Computer Science,University of Nottingham,Nottingham,United Kingdom
3.NVIDIA Joint-Lab on Mixed Reality,University of Nottingham,Ningbo,China
推荐引用方式
GB/T 7714
Lin, Weiqiang,Milic-Frayling,Natasa,Zhou, Keet al. Predicting outcomes of active sessions using multi-action motifs[C], 2019: 9-17.
条目包含的文件
条目无相关文件。
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Lin, Weiqiang]的文章
[Milic-Frayling,Natasa]的文章
[Zhou, Ke]的文章
百度学术
百度学术中相似的文章
[Lin, Weiqiang]的文章
[Milic-Frayling,Natasa]的文章
[Zhou, Ke]的文章
必应学术
必应学术中相似的文章
[Lin, Weiqiang]的文章
[Milic-Frayling,Natasa]的文章
[Zhou, Ke]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。