科研成果详情

题名Social Media Brand Engagement as a Proxy for E-Commerce Activities: A Case Study of Sina Weibo and JD
作者
发表日期2019-01-10
会议名称18th IEEE/WIC/ACM International Conference on Web Intelligence, WI 2018
会议录名称Proceedings - 2018 IEEE/WIC/ACM International Conference on Web Intelligence, WI 2018
ISBN9781538673256
页码375-382
会议日期December 3- 6, 2018
会议地点Santiago
摘要

E-commerce platforms facilitate sales of products while product vendors engage in Social Media Activities (SMA) to drive E-commerce Platform Activities (EPA) of consumers, enticing them to search, browse and buy products. The frequency and timing of SMA are expected to affect levels of EPA, increasing the number of brand related queries, clickthrough, and purchase orders. This paper applies cross-sectional data analysis to explore such beliefs and demonstrates weak-to-moderate correlations between daily SMA and EPA volumes. Further correlation analysis, using 30-day rolling windows, shows a high variability in correlation of SMA-EPA pairs and calls into question the predictive potential of SMA in relation to EPA. Considering the moderate correlation of selected SMA and EPA pairs (e.g., Post-Orders), we investigate whether SMA features can predict changes in the EPA levels, instead of precise EPA daily volumes. We define such levels in terms of EPA distribution quantiles (2, 3, and 5 levels) over training data. We formulate the EPA quantile predictions as a multi-class categorization problem. The experiments with Random Forest and Logistic Regression show a varied success, performing better than random for the top quantiles of purchase orders and for the lowest quantile of search and clickthrough activities. Similar results are obtained when predicting multi-day cumulative EPA levels (1, 3, and 7 days). Our results have considerable practical implications but, most importantly, urge the common beliefs to be re-examined, seeking a stronger evidence of SMA effects on EPA.

关键词Cross-sectional Data Analysis E-commerce Platform Activities Multi-class Categorization Quantile Level Prediction Social Media Activities Time Series
DOI10.1109/WI.2018.00-65
URL查看来源
收录类别CPCI-S
语种英语English
WOS研究方向Computer Science
WOS类目Computer Science, Artificial Intelligence ; Computer Science, Software Engineering
WOS记录号WOS:000458968200050
Scopus入藏号2-s2.0-85061916164
引用统计
被引频次:2[WOS]   [WOS记录]     [WOS相关记录]
文献类型会议论文
条目标识符https://repository.uic.edu.cn/handle/39GCC9TT/10976
专题个人在本单位外知识产出
作者单位
1.International Doctoral Innovation Center,University of Nottingham,Ningbo,China
2.Department of Computer Science,University of Chicago,Chicago,United States
3.School of Computer Science,University of Nottingham,Nottingham,United Kingdom
4.NVIDIA Joint-Lab on Mixed Reality,University of Nottingham,Ningbo,China
推荐引用方式
GB/T 7714
Lin, Weiqiang,Saleiro, Pedro,Milic-Frayling,Natasaet al. Social Media Brand Engagement as a Proxy for E-Commerce Activities: A Case Study of Sina Weibo and JD[C], 2019: 375-382.
条目包含的文件
条目无相关文件。
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Lin, Weiqiang]的文章
[Saleiro, Pedro]的文章
[Milic-Frayling,Natasa]的文章
百度学术
百度学术中相似的文章
[Lin, Weiqiang]的文章
[Saleiro, Pedro]的文章
[Milic-Frayling,Natasa]的文章
必应学术
必应学术中相似的文章
[Lin, Weiqiang]的文章
[Saleiro, Pedro]的文章
[Milic-Frayling,Natasa]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。