科研成果详情

题名An improved system for sentence-level novelty detection in textual streams
作者
发表日期2015
会议名称2015 International Conference on Smart and Sustainable City and Big Data, ICSSC 2015
会议录名称IET Conference Publications
卷号2015
期号CP672
页码1-6
会议日期July 26-27, 2015
会议地点Shanghai
摘要

Novelty detection in news events has long been a difficult problem. A number of models performed well on specific data streams but certain issues are far from being solved, particularly in large data streams from the WWW where unpredictability of new terms requires adaptation in the vector space model. We present a novel event detection system based on the Incremental Term Frequency-Inverse Document Frequency (TF-IDF) weighting incorporated with Locality Sensitive Hashing (LSH). Our system could efficiently and effectively adapt to the changes within the data streams of any new terms with continual updates to the vector space model. Regarding miss probability, our proposed novelty detection framework outperforms a recognised baseline system by approximately 16% when evaluating a benchmark dataset from Google News.

关键词Big data First story detection Locality sensitive hashing Novelty detection Text mining
DOI10.2139/ssrn.2828008
URL查看来源
语种英语English
Scopus入藏号2-s2.0-84964296808
引用统计
文献类型会议论文
条目标识符https://repository.uic.edu.cn/handle/39GCC9TT/11008
专题个人在本单位外知识产出
作者单位
1.International Doctoral Innovation Centre,University of Nottingham,Ningbo,United Kingdom
2.School of Computer Science,University of Nottingham,United Kingdom
推荐引用方式
GB/T 7714
Fu, Xinyu,Ch'ng, Eugene,Aickelin, Uweet al. An improved system for sentence-level novelty detection in textual streams[C], 2015: 1-6.
条目包含的文件
条目无相关文件。
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Fu, Xinyu]的文章
[Ch'ng, Eugene]的文章
[Aickelin, Uwe]的文章
百度学术
百度学术中相似的文章
[Fu, Xinyu]的文章
[Ch'ng, Eugene]的文章
[Aickelin, Uwe]的文章
必应学术
必应学术中相似的文章
[Fu, Xinyu]的文章
[Ch'ng, Eugene]的文章
[Aickelin, Uwe]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。