科研成果详情

题名On the memory wall and performance of symmetric sparse matrix vector multiplications in different data structures on shared memory machines
作者
发表日期2016-07-20
会议名称12th IEEE Int Conf Ubiquitous Intelligence & Comp/12th IEEE Int Conf Autonom & Trusted Comp/15th IEEE Int Conf Scalable Comp & Commun & Associated Workshops/IEEE Int Conf Cloud & Big Data Comp/IEEE Int Conf Internet People
会议录名称Proceedings - 2015 IEEE 12th International Conference on Ubiquitous Intelligence and Computing, 2015 IEEE 12th International Conference on Advanced and Trusted Computing, 2015 IEEE 15th International Conference on Scalable Computing and Communications, 2015 IEEE International Conference on Cloud and Big Data Computing, 2015 IEEE International Conference on Internet of People and Associated Symposia/Workshops, UIC-ATC-ScalCom-CBDCom-IoP 2015
页码1439-1444
会议日期AUG 10-14, 2015
会议地点Beijing
会议举办国PEOPLES R CHINA
摘要

Sparse matrix vector multiplications (SpMVs) are typical sparse operations which have a high ratio of memory reference volume to computations. According to the roof-line model, the performance of such operations is limited by the memory bandwidth on shared memory machine. A careful design of a data structure can improve the performance of such sparse memory intensive operations. By comparing the performance of symmetric SpMVs in three different data structures, the paper shows that a packed compressed data structure for symmetric sparse matrices significantly improves the performance of symmetric sparse matrix vector multiplication on shared memory machine. A simple linear model is proposed to show that the floating point operations time can be overlapped by the memory reference time and thus is negligible for such sparse operations with intensive memory reference. Various numerical results are presented, compared, analyzed and validated to confirm the proposed model, and the STREAM benchmark is also used to verify our results.

关键词Memory bandwidth Memory intensive applications Performance evaluations Sparse matrix vector multiplicaiton
DOI10.1109/UIC-ATC-ScalCom-CBDCom-IoP.2015.259
URL查看来源
收录类别CPCI-S
语种英语English
WOS研究方向Computer Science
WOS类目Computer Science ; Artificial Intelligence Computer Science ; Information SystemsComputer Science, Interdisciplinary Applications Computer Science ; Theory & Methods
WOS记录号WOS:000411670500235
Scopus入藏号2-s2.0-84983393543
引用统计
被引频次:2[WOS]   [WOS记录]     [WOS相关记录]
文献类型会议论文
条目标识符https://repository.uic.edu.cn/handle/39GCC9TT/11513
专题个人在本单位外知识产出
作者单位
Laboratory of Computational Physics,Institute of Applied Physics and Computational Mathematics,Beijing,100088,China
推荐引用方式
GB/T 7714
Gu, Tongxiang,Liu, Xingping,Mo, Zeyaoet al. On the memory wall and performance of symmetric sparse matrix vector multiplications in different data structures on shared memory machines[C], 2016: 1439-1444.
条目包含的文件
条目无相关文件。
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Gu, Tongxiang]的文章
[Liu, Xingping]的文章
[Mo, Zeyao]的文章
百度学术
百度学术中相似的文章
[Gu, Tongxiang]的文章
[Liu, Xingping]的文章
[Mo, Zeyao]的文章
必应学术
必应学术中相似的文章
[Gu, Tongxiang]的文章
[Liu, Xingping]的文章
[Mo, Zeyao]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。