科研成果详情

发表状态已发表Published
题名Constructing optimal projection designs
作者
发表日期2019-11-02
发表期刊Statistics
ISSN/eISSN0233-1888
卷号53期号:6页码:1357-1385
摘要

The early stages of many real-life experiments involve a large number of factors among which only a few factors are active. Unfortunately, the optimal full-dimensional designs of those early stages may have bad low-dimensional projections and the experimenters do not know which factors turn out to be important before conducting the experiment. Therefore, designs with good projections are desirable for factor screening. In this regard, significant questions are arising such as whether the optimal full-dimensional designs have good projections onto low dimensions? How experimenters can measure the goodness of a full-dimensional design by focusing on all of its projections?, and are there linkages between the optimality of a full-dimensional design and the optimality of its projections? Through theoretical justifications, this paper tries to provide answers to these interesting questions by investigating the construction of optimal (average) projection designs for screening either nominal or quantitative factors. The main results show that: based on the aberration and orthogonality criteria the full-dimensional design is optimal if and only if it is optimal projection design; the full-dimensional design is optimal via the aberration and orthogonality if and only if it is uniform projection design; there is no guarantee that a uniform full-dimensional design is optimal projection design via any criterion; the projection design is optimal via the aberration, orthogonality and uniformity criteria if it is optimal via any criterion of them; and the saturated orthogonal designs have the same average projection performance.

关键词aberration Hamming distance level permutations moment aberration optimal projection designs orthogonality Projection uniformity
DOI10.1080/02331888.2019.1688816
URL查看来源
收录类别SCIE
WOS研究方向Mathematics
WOS类目Statistics & Probability
WOS记录号WOS:000495821200001
Scopus入藏号2-s2.0-85075028816
引用统计
被引频次:14[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符https://repository.uic.edu.cn/handle/39GCC9TT/1159
专题理工科技学院
通讯作者Elsawah, A. M.
作者单位
1.Division of Science and Technology, BNU-HKBU United International College, Zhuhai, China
2.Department of Mathematics, Faculty of Science, Zagazig University, Zagazig, Egypt
3.School of Mathematical Sciences, Soochow University, Suzhou, China
4.The Key Lab of Random Complex Structures and Data Analysis, The Chinese Academy of Sciences, Beijing, China
第一作者单位北师香港浸会大学
通讯作者单位北师香港浸会大学
推荐引用方式
GB/T 7714
Elsawah, A. M.,Tang, Yu,Fang, Kaitai. Constructing optimal projection designs[J]. Statistics, 2019, 53(6): 1357-1385.
APA Elsawah, A. M., Tang, Yu, & Fang, Kaitai. (2019). Constructing optimal projection designs. Statistics, 53(6), 1357-1385.
MLA Elsawah, A. M.,et al."Constructing optimal projection designs". Statistics 53.6(2019): 1357-1385.
条目包含的文件 下载所有文件
文件名称/大小 文献类型 版本类型 开放类型 使用许可
Elsawah-2019-Constru(2385KB)期刊论文出版稿开放获取CC BY-NC-SA浏览 下载
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Elsawah, A. M.]的文章
[Tang, Yu]的文章
[Fang, Kaitai]的文章
百度学术
百度学术中相似的文章
[Elsawah, A. M.]的文章
[Tang, Yu]的文章
[Fang, Kaitai]的文章
必应学术
必应学术中相似的文章
[Elsawah, A. M.]的文章
[Tang, Yu]的文章
[Fang, Kaitai]的文章
相关权益政策
暂无数据
收藏/分享
文件名: Elsawah-2019-Constructing optimal projection d.pdf
格式: Adobe PDF
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。