发表状态 | 已发表Published |
题名 | Deep learning-based multi-modal data integration enhancing breast cancer disease-free survival prediction |
作者 | |
发表日期 | 2024-06-01 |
发表期刊 | Precision Clinical Medicine
![]() |
ISSN/eISSN | 2096-5303 |
卷号 | 7期号:2 |
摘要 | Background: The pr ognosis of br east cancer is often unfav ora b le, emphasizing the need for early metastasis risk detection and accu- rate tr eatment pr edictions. This study aimed to dev elop a nov el m ulti-modal dee p learning model using pr eoperati v e data to pr edict disease-fr ee survi v al ( DFS ) . Methods: We r etr ospecti v el y collected pathology imaging, molecular and clinical data from The Cancer Genome Atlas and one independent institution in China. We developed a novel Deep Learning Clinical Medicine Based Pathological Gene Multi-modal ( Dee pClinMed-PGM ) model for DFS pr ediction, inte gr ating clinicopathological data with molecular insights. The patients included the training cohort ( n = 741 ) , internal validation cohort ( n = 184 ) , and external testing cohort ( n = 95 ) . Result: Inte gr ating multi-modal data into the DeepClinMed-PGM model significantly improved area under the receiver operating c har acteristic curve ( AUC ) values. In the training cohort, AUC values for 1-, 3-, and 5-year DFS predictions increased to 0.979, 0.957, and 0.871, while in the external testing cohort, the v alues r eached 0.851, 0.878, and 0.938 for 1-, 2-, and 3-year DFS pr edictions, r especti v el y. The DeepClinMed-PGM's robust discriminative capabilities were consistently evident across various cohorts, including the training cohort [hazard ratio ( HR ) 0.027, 95% confidence interval ( CI ) 0.0016-0.046, P < 0.0001], the internal validation cohort ( HR 0.117, 95% CI 0.041-0.334, P < 0.0001 ) , and the external cohort ( HR 0.061, 95% CI 0.017-0.218, P < 0.0001 ) . Additionally, the DeepClinMed-PGM model demonstrated C-index values of 0.925, 0.823, and 0.864 within the three cohorts, respectively. Conclusion: This study introduces an approach to breast cancer prognosis, inte gr ating imaging and molecular and clinical data for enhanced pr edicti v e accuracy, offering pr omise for personalized tr eatment str ate gies. |
关键词 | breast cancer deep learning disease-free survival multi-modality pathological |
DOI | 10.1093/pcmedi/pbae012 |
URL | 查看来源 |
收录类别 | ESCI |
语种 | 英语English |
WOS研究方向 | Research & Experimental Medicine |
WOS类目 | Medicine, Research & Experimental |
WOS记录号 | WOS:001251787700001 |
Scopus入藏号 | 2-s2.0-85196709507 |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | https://repository.uic.edu.cn/handle/39GCC9TT/11762 |
专题 | 理工科技学院 |
通讯作者 | Su, Weifeng |
作者单位 | 1.Guangdong Key Laboratory of Cross-Application of Data Science and Technology,Beijing Normal University,Hong Kong Baptist University United International College,Zhuhai,519087,China 2.Faculty of Innovation Engineering,Macau University of Science and Technology,Taipa,999078,Macao 3.Department of Computer and Information Engineering,Guangzhou Huali College,Guangzhou,511325,China 4.Department of Pathology,Sun Yat-sen Memorial Hospital,Sun Yat-sen University,Guangzhou,510120,China 5.Guangzhou National Laboratory,Guangzhou,510005,China 6.Dermatology and Venereology Division,Department of Medicine Solna,Center for Molecular Medicine,Karolinska Institutet,Stockholm,17177,Sweden 7.Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation,Department of Medical Oncology,Breast Tumor Centre,Phase I Clinical Trial Centre,Sun Yat-sen Memorial Hospital,Sun Yat-sen University,Guangzhou,510120,China 8.The Second Clinical Medical College,Southern Medical University,Guangzhou,510515,China 9.Faculty of Medicine,Macau University of Science and Technology,Taipa,999078,Macao |
第一作者单位 | 北师香港浸会大学 |
通讯作者单位 | 北师香港浸会大学 |
推荐引用方式 GB/T 7714 | Wang, Zehua,Lin, Ruichong,Li, Yanchunet al. Deep learning-based multi-modal data integration enhancing breast cancer disease-free survival prediction[J]. Precision Clinical Medicine, 2024, 7(2). |
APA | Wang, Zehua., Lin, Ruichong., Li, Yanchun., Zeng, Jin., Chen, Yongjian., .. & Su, Weifeng. (2024). Deep learning-based multi-modal data integration enhancing breast cancer disease-free survival prediction. Precision Clinical Medicine, 7(2). |
MLA | Wang, Zehua,et al."Deep learning-based multi-modal data integration enhancing breast cancer disease-free survival prediction". Precision Clinical Medicine 7.2(2024). |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论