科研成果详情

发表状态已发表Published
题名Deep learning-based multi-modal data integration enhancing breast cancer disease-free survival prediction
作者
发表日期2024-06-01
发表期刊Precision Clinical Medicine
ISSN/eISSN2096-5303
卷号7期号:2
摘要

Background: The pr ognosis of br east cancer is often unfav ora b le, emphasizing the need for early metastasis risk detection and accu- rate tr eatment pr edictions. This study aimed to dev elop a nov el m ulti-modal dee p learning model using pr eoperati v e data to pr edict disease-fr ee survi v al ( DFS ) . Methods: We r etr ospecti v el y collected pathology imaging, molecular and clinical data from The Cancer Genome Atlas and one independent institution in China. We developed a novel Deep Learning Clinical Medicine Based Pathological Gene Multi-modal ( Dee pClinMed-PGM ) model for DFS pr ediction, inte gr ating clinicopathological data with molecular insights. The patients included the training cohort ( n = 741 ) , internal validation cohort ( n = 184 ) , and external testing cohort ( n = 95 ) . Result: Inte gr ating multi-modal data into the DeepClinMed-PGM model significantly improved area under the receiver operating c har acteristic curve ( AUC ) values. In the training cohort, AUC values for 1-, 3-, and 5-year DFS predictions increased to 0.979, 0.957, and 0.871, while in the external testing cohort, the v alues r eached 0.851, 0.878, and 0.938 for 1-, 2-, and 3-year DFS pr edictions, r especti v el y. The DeepClinMed-PGM's robust discriminative capabilities were consistently evident across various cohorts, including the training cohort [hazard ratio ( HR ) 0.027, 95% confidence interval ( CI ) 0.0016-0.046, P < 0.0001], the internal validation cohort ( HR 0.117, 95% CI 0.041-0.334, P < 0.0001 ) , and the external cohort ( HR 0.061, 95% CI 0.017-0.218, P < 0.0001 ) . Additionally, the DeepClinMed-PGM model demonstrated C-index values of 0.925, 0.823, and 0.864 within the three cohorts, respectively. Conclusion: This study introduces an approach to breast cancer prognosis, inte gr ating imaging and molecular and clinical data for enhanced pr edicti v e accuracy, offering pr omise for personalized tr eatment str ate gies.

关键词breast cancer deep learning disease-free survival multi-modality pathological
DOI10.1093/pcmedi/pbae012
URL查看来源
收录类别ESCI
语种英语English
WOS研究方向Research & Experimental Medicine
WOS类目Medicine, Research & Experimental
WOS记录号WOS:001251787700001
Scopus入藏号2-s2.0-85196709507
引用统计
被引频次:6[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符https://repository.uic.edu.cn/handle/39GCC9TT/11762
专题理工科技学院
通讯作者Su, Weifeng
作者单位
1.Guangdong Key Laboratory of Cross-Application of Data Science and Technology,Beijing Normal University,Hong Kong Baptist University United International College,Zhuhai,519087,China
2.Faculty of Innovation Engineering,Macau University of Science and Technology,Taipa,999078,Macao
3.Department of Computer and Information Engineering,Guangzhou Huali College,Guangzhou,511325,China
4.Department of Pathology,Sun Yat-sen Memorial Hospital,Sun Yat-sen University,Guangzhou,510120,China
5.Guangzhou National Laboratory,Guangzhou,510005,China
6.Dermatology and Venereology Division,Department of Medicine Solna,Center for Molecular Medicine,Karolinska Institutet,Stockholm,17177,Sweden
7.Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation,Department of Medical Oncology,Breast Tumor Centre,Phase I Clinical Trial Centre,Sun Yat-sen Memorial Hospital,Sun Yat-sen University,Guangzhou,510120,China
8.The Second Clinical Medical College,Southern Medical University,Guangzhou,510515,China
9.Faculty of Medicine,Macau University of Science and Technology,Taipa,999078,Macao
第一作者单位北师香港浸会大学
通讯作者单位北师香港浸会大学
推荐引用方式
GB/T 7714
Wang, Zehua,Lin, Ruichong,Li, Yanchunet al. Deep learning-based multi-modal data integration enhancing breast cancer disease-free survival prediction[J]. Precision Clinical Medicine, 2024, 7(2).
APA Wang, Zehua., Lin, Ruichong., Li, Yanchun., Zeng, Jin., Chen, Yongjian., .. & Su, Weifeng. (2024). Deep learning-based multi-modal data integration enhancing breast cancer disease-free survival prediction. Precision Clinical Medicine, 7(2).
MLA Wang, Zehua,et al."Deep learning-based multi-modal data integration enhancing breast cancer disease-free survival prediction". Precision Clinical Medicine 7.2(2024).
条目包含的文件
条目无相关文件。
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Wang, Zehua]的文章
[Lin, Ruichong]的文章
[Li, Yanchun]的文章
百度学术
百度学术中相似的文章
[Wang, Zehua]的文章
[Lin, Ruichong]的文章
[Li, Yanchun]的文章
必应学术
必应学术中相似的文章
[Wang, Zehua]的文章
[Lin, Ruichong]的文章
[Li, Yanchun]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。