科研成果详情

发表状态已发表Published
题名Mixed neural operator learning on the solitary wave propagation over slope topography and inverse problem
作者
发表日期2024-11-01
发表期刊Physics of Fluids
ISSN/eISSN1070-6631
卷号36期号:11
摘要

This study proposes the mixed neural operator (MNO) learning framework, which further combines with the particle swarm optimization (PSO) to address challenges of solitary wave propagation over topography. The forward problem is defined as the evolution prediction of the solitary wave propagating over topography, while the inverse problem is defined as an optimization to identify the topography parameter based on the solitary wave elevation. Both the forward and inverse problems can be considered within a single framework and the dataset are provided by the classical Korteweg-de Vries (KdV) equation. The MNO framework is shown to simulate the evolution of solitary waves over topography, accurately capturing the wave elevation under different topographical conditions. By comparing with different neural operators, it is found that the U-shape neural operator is the most suitable for the KdV equation simulation. The coefficient of determination for the inverse problem based on the combination of MNO and PSO can reach 0.992, showing great potential of the approach in topography recognition. Finally, the proposed learning framework is preliminary applied to the prediction of the tsunami runup onto a complex beach, and a good agreement is also achieved between the direct simulation and the learning framework prediction.

DOI10.1063/5.0239137
URL查看来源
收录类别SCIE
语种英语English
WOS研究方向Mechanics ; Physics
WOS类目Mechanics ; Physics, Fluids & Plasmas
WOS记录号WOS:001348093700007
Scopus入藏号2-s2.0-85208289896
引用统计
被引频次:2[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符https://repository.uic.edu.cn/handle/39GCC9TT/12097
专题北师香港浸会大学
通讯作者Li, Ruipeng
作者单位
1.Zhejiang University, Westlake University Joint Training, Zhejiang University, Hangzhou, China
2.Key Laboratory of Coastal Environment and Resources of Zhejiang Province, School of Engineering, Westlake University, Hangzhou, China
3.College of Shipbuilding Engineering, Harbin Engineering University, Harbin, China
4.Hainan Safety and Environmental Protection Branch of CNOOC Energy Development Co., Ltd., Haikou, China
5.China Ship Scientific Research Center, Wuxi, China
6.Faculty of Science and Technology, Beijing Normal Univerisity-Hong Kong Baptist University United International College, Zhuhai, China
7.Research Center for Industries of the Future, Westlake University, Hangzhou, China
推荐引用方式
GB/T 7714
Liang, Aoming,Wang, Zhan,Luo, Henget al. Mixed neural operator learning on the solitary wave propagation over slope topography and inverse problem[J]. Physics of Fluids, 2024, 36(11).
APA Liang, Aoming., Wang, Zhan., Luo, Heng., Zheng, Kun., Li, Ruipeng., .. & Fan, Dixia. (2024). Mixed neural operator learning on the solitary wave propagation over slope topography and inverse problem. Physics of Fluids, 36(11).
MLA Liang, Aoming,et al."Mixed neural operator learning on the solitary wave propagation over slope topography and inverse problem". Physics of Fluids 36.11(2024).
条目包含的文件
条目无相关文件。
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Liang, Aoming]的文章
[Wang, Zhan]的文章
[Luo, Heng]的文章
百度学术
百度学术中相似的文章
[Liang, Aoming]的文章
[Wang, Zhan]的文章
[Luo, Heng]的文章
必应学术
必应学术中相似的文章
[Liang, Aoming]的文章
[Wang, Zhan]的文章
[Luo, Heng]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。