题名 | Representative Points Based Goodness-of-fit Test for Location-scale Distributions |
作者 | |
发表日期 | 2024 |
会议名称 | 2024 International Conference on Applied Mathematics, Modelling and Statistics Application |
会议录名称 | Journal of Physics: Conference Series
![]() |
ISSN | 1742-6588 |
卷号 | 2890 |
期号 | 1 |
会议日期 | 29/08/2024 - 30/08/2024 |
会议地点 | Changsha, China |
出版者 | IOP Publishing |
摘要 | The classical Pearson-Fisher chi-square test is a general approach to testing goodness-of-fit for univariate data. There is a considerable amount of discussion on how to effectively apply this test to practical goodness-of-fit problems in the literature. However, the choice of optimal grouping intervals in constructing the chi-square statistic still remains arguable and uncertain. Based on the statistical principle of defining the mean-square-error representative points, we propose to employ the statistical representative points to construct the Pearson-Fisher chi-square test. We carry out an extensive Monte Carlo study on the performance of the new-type of chi-square test by focusing on some location-scale distributions. It shows that our construction of the chi-square test outperforms the traditional construction of the same test by using equiprobable points for the grouping intervals in the sense of type I error control and power against some general alternative distributions. |
关键词 | Goodness-of-fit test Location-scale distributions Pearson-Fisher chi-square test Representative points |
DOI | 10.1088/1742-6596/2890/1/012003 |
URL | 查看来源 |
语种 | 英语English |
Scopus入藏号 | 2-s2.0-85210884287 |
引用统计 | |
文献类型 | 会议论文 |
条目标识符 | https://repository.uic.edu.cn/handle/39GCC9TT/12771 |
专题 | 理工科技学院 |
通讯作者 | Peng, Xiaoling |
作者单位 | Department of Statistics and Data Science,Guangdong Provincial Key Laboratory of Interdisciplinary Research and Application for Data Science,BNU-HKBU United International College,Zhuhai,2000 Jin Tong Road,519087,China |
第一作者单位 | 北师香港浸会大学 |
通讯作者单位 | 北师香港浸会大学 |
推荐引用方式 GB/T 7714 | Li, Jie,Liang, Jiajuan,Kang, Jiangruiet al. Representative Points Based Goodness-of-fit Test for Location-scale Distributions[C]: IOP Publishing, 2024. |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论