发表状态 | 已发表Published |
题名 | Non-splitting Eulerian-Lagrangian WENO schemes for two-dimensional nonlinear convection-diffusion equations |
作者 | |
发表日期 | 2025-05-15 |
发表期刊 | Journal of Computational Physics
![]() |
ISSN/eISSN | 0021-9991 |
卷号 | 529 |
摘要 | In this paper, we develop high-order, conservative, non-splitting Eulerian-Lagrangian (EL) Runge-Kutta (RK) finite volume (FV) weighted essentially non-oscillatory (WENO) schemes for convection-diffusion equations. The proposed EL-RK-FV-WENO scheme defines modified characteristic lines and evolves the solution along them, significantly relaxing the time-step constraint for the convection term. The main algorithm design challenge arises from the complexity of constructing accurate and robust reconstructions on dynamically varying Lagrangian meshes. This reconstruction process is needed for flux evaluations on time-dependent upstream quadrilaterals and time integrations along moving characteristics. To address this, we propose a strategy that utilizes a WENO reconstruction on a fixed Eulerian mesh for spatial reconstruction, and updates intermediate solutions on the Eulerian background mesh for implicit-explicit RK temporal integration. This strategy leverages efficient reconstruction and remapping algorithms to manage the complexities of polynomial reconstructions on time-dependent quadrilaterals, while ensuring local mass conservation. The proposed scheme ensures mass conservation due to the flux-form semi-discretization and the mass-conservative reconstruction on both background and upstream cells. Extensive numerical tests have been performed to verify the effectiveness of the proposed scheme. |
关键词 | Convection-diffusion Eulerian-Lagrangian Mass conservation Modified characteristic lines Varying Lagrangian meshes WENO reconstruction |
DOI | 10.1016/j.jcp.2025.113890 |
URL | 查看来源 |
收录类别 | SCIE |
语种 | 英语English |
WOS研究方向 | Computer Science ; Physics |
WOS类目 | Computer Science, Interdisciplinary Applications ; Physics, Mathematical |
WOS记录号 | WOS:001436410700001 |
Scopus入藏号 | 2-s2.0-85218868930 |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | https://repository.uic.edu.cn/handle/39GCC9TT/12786 |
专题 | 理工科技学院 |
通讯作者 | Cai, Xiaofeng |
作者单位 | 1.Department of Mathematical Sciences,University of Delaware,Newark,19716,United States 2.Research Center for Mathematics,Advanced Institute of Natural Sciences,Beijing Normal University,Zhuhai,519087,China 3.Guangdong Provincial Key Laboratory of Interdisciplinary Research and Application for Data Science,BNU-HKBU United International College,Zhuhai,519087,China 4.School of Mathematical Sciences,Fujian Provincial Key Laboratory of Mathematical Modeling and High-Performance Scientific Computing,Xiamen University,Xiamen,Fujian,361005,China |
通讯作者单位 | 北师香港浸会大学 |
推荐引用方式 GB/T 7714 | Zheng, Nanyi,Cai, Xiaofeng,Qiu, Jing Meiet al. Non-splitting Eulerian-Lagrangian WENO schemes for two-dimensional nonlinear convection-diffusion equations[J]. Journal of Computational Physics, 2025, 529. |
APA | Zheng, Nanyi, Cai, Xiaofeng, Qiu, Jing Mei, & Qiu, Jianxian. (2025). Non-splitting Eulerian-Lagrangian WENO schemes for two-dimensional nonlinear convection-diffusion equations. Journal of Computational Physics, 529. |
MLA | Zheng, Nanyi,et al."Non-splitting Eulerian-Lagrangian WENO schemes for two-dimensional nonlinear convection-diffusion equations". Journal of Computational Physics 529(2025). |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论