发表状态 | 已发表Published |
题名 | ShadowAdapter: Adapting Segment Anything Model with Auto-Prompt for shadow detection |
作者 | |
发表日期 | 2025-05-10 |
发表期刊 | Expert Systems with Applications
![]() |
ISSN/eISSN | 0957-4174 |
卷号 | 273 |
摘要 | Segment anything model (SAM) has shown its spectacular performance in segmenting universal objects, especially when elaborate prompts are provided. However, the drawback of SAM is twofold. On the first hand, it fails to segment specific targets, e.g., shadow images or lesions in medical images. On the other hand, manually specifying prompts is extremely time-consuming. To overcome the problems, we propose AdapterShadow, which adapts SAM model for shadow detection. To adapt SAM for shadow images, trainable adapters are proposed and inserted into the frozen image encoder of SAM, considering that the training of the whole SAM model is both time and memory consuming. Moreover, we introduce a novel grid sampling method to generate dense point prompts, which helps to automatically segment shadows without any manual interventions. Extensive experiments are conducted on four widely used benchmark datasets to demonstrate the superior performance of our proposed method. Codes are publicly available at https://github.com/LeipingJie/AdapterShadow. |
关键词 | Adapter Auto-Prompt Image segmentation Segment Anything Shadow detection |
DOI | 10.1016/j.eswa.2025.126809 |
URL | 查看来源 |
收录类别 | SCIE |
语种 | 英语English |
WOS研究方向 | Computer Science ; Engineering ; Operations Research & Management Science |
WOS类目 | Computer Science, Artificial Intelligence ; Engineering, Electrical & Electronic ; Operations Research & Management Science |
WOS记录号 | WOS:001430473700001 |
Scopus入藏号 | 2-s2.0-85218171973 |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | https://repository.uic.edu.cn/handle/39GCC9TT/12787 |
专题 | 理工科技学院 |
通讯作者 | Zhang, Hui |
作者单位 | 1.Faculty of Mathematics and Computer Science,Guangdong Ocean University,Zhanjiang,524088,China 2.Department of Computer Science and Technology,BNU-HKBU United International College,Zhuhai,519087,China |
通讯作者单位 | 北师香港浸会大学 |
推荐引用方式 GB/T 7714 | Jie, Leiping,Zhang, Hui. ShadowAdapter: Adapting Segment Anything Model with Auto-Prompt for shadow detection[J]. Expert Systems with Applications, 2025, 273. |
APA | Jie, Leiping, & Zhang, Hui. (2025). ShadowAdapter: Adapting Segment Anything Model with Auto-Prompt for shadow detection. Expert Systems with Applications, 273. |
MLA | Jie, Leiping,et al."ShadowAdapter: Adapting Segment Anything Model with Auto-Prompt for shadow detection". Expert Systems with Applications 273(2025). |
条目包含的文件 | 条目无相关文件。 |
个性服务 |
查看访问统计 |
谷歌学术 |
谷歌学术中相似的文章 |
[Jie, Leiping]的文章 |
[Zhang, Hui]的文章 |
百度学术 |
百度学术中相似的文章 |
[Jie, Leiping]的文章 |
[Zhang, Hui]的文章 |
必应学术 |
必应学术中相似的文章 |
[Jie, Leiping]的文章 |
[Zhang, Hui]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论