科研成果详情

发表状态已发表Published
题名Deep Clustering Analysis via Dual Variational Autoencoder With Spherical Latent Embeddings
作者
发表日期2023-09-01
发表期刊IEEE Transactions on Neural Networks and Learning Systems
ISSN/eISSN2162-237X
卷号34期号:9页码:6303-6312
摘要

In recent years, clustering methods based on deep generative models have received great attention in various unsupervised applications, due to their capabilities for learning promising latent embeddings from original data. This article proposes a novel clustering method based on variational autoencoder (VAE) with spherical latent embeddings. The merits of our clustering method can be summarized as follows. First, instead of considering the Gaussian mixture model (GMM) as the prior over latent space as in a variety of existing VAE-based deep clustering methods, the von Mises-Fisher mixture model prior is deployed in our method, leading to spherical latent embeddings that can explicitly control the balance between the capacity of decoder and the utilization of latent embedding in a principled way. Second, a dual VAE structure is leveraged to impose the reconstruction constraint for the latent embedding and its corresponding noise counterpart, which embeds the input data into a hyperspherical latent space for clustering. Third, an augmented loss function is proposed to enhance the robustness of our model, which results in a self-supervised manner through the mutual guidance between the original data and the augmented ones. The effectiveness of the proposed deep generative clustering method is validated through comparisons with state-of-the-art deep clustering methods on benchmark datasets. The source code of the proposed model is available at https://github.com/fwt-team/DSVAE.

关键词Clustering data augmentation dual variational autoencoder mixture models variational autoencoder (VAE) variational inference von Mises-Fisher mixture model
DOI10.1109/TNNLS.2021.3135460
URL查看来源
收录类别SCIE
语种英语English
WOS研究方向Computer Science ; Engineering
WOS类目Computer Science, Artificial Intelligence ; Computer Science, Hardware & Architecture ; Computer Science, Theory & Methods ; Engineering, Electrical & Electronic
WOS记录号WOS:001062676600084
Scopus入藏号2-s2.0-85122106006
引用统计
被引频次:25[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符https://repository.uic.edu.cn/handle/39GCC9TT/13024
专题个人在本单位外知识产出
理工科技学院
通讯作者Fan, Wentao
作者单位
1.Department of Computer Science and Technology,Huaqiao University,Xiamen,361021,China
2.Concordia Institute for Information Systems Engineering (CIISE),Concordia University,Montreal,H3G 1T7,Canada
推荐引用方式
GB/T 7714
Yang, Lin,Fan, Wentao,Bouguila, Nizar. Deep Clustering Analysis via Dual Variational Autoencoder With Spherical Latent Embeddings[J]. IEEE Transactions on Neural Networks and Learning Systems, 2023, 34(9): 6303-6312.
APA Yang, Lin, Fan, Wentao, & Bouguila, Nizar. (2023). Deep Clustering Analysis via Dual Variational Autoencoder With Spherical Latent Embeddings. IEEE Transactions on Neural Networks and Learning Systems, 34(9), 6303-6312.
MLA Yang, Lin,et al."Deep Clustering Analysis via Dual Variational Autoencoder With Spherical Latent Embeddings". IEEE Transactions on Neural Networks and Learning Systems 34.9(2023): 6303-6312.
条目包含的文件
条目无相关文件。
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Yang, Lin]的文章
[Fan, Wentao]的文章
[Bouguila, Nizar]的文章
百度学术
百度学术中相似的文章
[Yang, Lin]的文章
[Fan, Wentao]的文章
[Bouguila, Nizar]的文章
必应学术
必应学术中相似的文章
[Yang, Lin]的文章
[Fan, Wentao]的文章
[Bouguila, Nizar]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。