科研成果详情

题名Infinite Von Mises-Fisher Mixture Model and Its Application to Gene Expression Data Clustering
作者
发表日期2021-03-05
会议名称5th International Conference on Innovation in Artificial Intelligence (ICIAI)
会议录名称ACM International Conference Proceeding Series
卷号PartF171546
页码55-61
会议日期MAR 05-08, 2021
会议地点ELECTR NETWORK
摘要

In some applications of data mining, clustering analysis of directional data is often involved. In this case, conventional model-based clustering methods are not suitable for fitting the data of such type of structure. Therefore, a Dirichlet Process Mixture Model based on von Mises-Fisher distribution was proposed for the clustering analysis of directional data. The main motivation is that as a non-parametric Bayesian model, The Dirichlet process can automatically determine the complexity of the mixture model when the number of data categories is unknown. We use the accelerated Variational inference algorithm to quickly estimate the parameters involved in the model, which enables the method to be applied in applications with large data scale. The validity of the proposed model was verified by using different scale simulation data and clustering analysis of gene expression data.

关键词Clustering Dirichlet Process Gene Expression Kd Tree Variational Inference von-Mises Fisher Mixture Model
DOI10.1145/3461353.3461364
URL查看来源
收录类别CPCI-S
语种英语English
WOS研究方向Computer Science
WOS类目Computer Science, Artificial Intelligence ; Computer Science, Cybernetics
WOS记录号WOS:000777584200010
Scopus入藏号2-s2.0-85114555865
引用统计
文献类型会议论文
条目标识符https://repository.uic.edu.cn/handle/39GCC9TT/13033
专题个人在本单位外知识产出
理工科技学院
作者单位
College of Computer Science and Technology,Huaqiao University,Xiamen,China
推荐引用方式
GB/T 7714
Jiaojiao, Zhu,Wentao, Fan. Infinite Von Mises-Fisher Mixture Model and Its Application to Gene Expression Data Clustering[C], 2021: 55-61.
条目包含的文件
条目无相关文件。
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Jiaojiao, Zhu]的文章
[Wentao, Fan]的文章
百度学术
百度学术中相似的文章
[Jiaojiao, Zhu]的文章
[Wentao, Fan]的文章
必应学术
必应学术中相似的文章
[Jiaojiao, Zhu]的文章
[Wentao, Fan]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。