题名 | Entropy-Based Variational Learning of Finite Generalized Inverted Dirichlet Mixture Model |
作者 | |
发表日期 | 2021 |
会议名称 | 13th Asian Conference on Intelligent Information and Database Systems (ACIIDS) |
会议录名称 | Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
![]() |
ISSN | 0302-9743 |
卷号 | 12672 LNAI |
页码 | 130-143 |
会议日期 | APR 07-10, 2022 |
会议地点 | Phuket, THAILAND |
摘要 | Mixture models are considered as a powerful approach for modeling complex data in an unsupervised manner. In this paper, we introduce a finite generalized inverted Dirichlet mixture model for semi-bounded data clustering, where we also developed a variational entropy-based method in order to flexibly estimate the parameters and select the number of components. Experiments on real-world applications including breast cancer detection and image categorization demonstrate the superior performance of our proposed model. |
关键词 | Clustering Entropy-based variational learning Generalized inverted dirichlet distribution Unsupervised learning |
DOI | 10.1007/978-3-030-73280-6_11 |
URL | 查看来源 |
收录类别 | CPCI-S |
语种 | 英语English |
WOS研究方向 | Computer Science |
WOS类目 | Computer Science, Artificial Intelligence ; Computer Science, Information Systems ; Computer Science, Theory & Methods |
WOS记录号 | WOS:000927603900011 |
Scopus入藏号 | 2-s2.0-85104798531 |
引用统计 | |
文献类型 | 会议论文 |
条目标识符 | https://repository.uic.edu.cn/handle/39GCC9TT/13035 |
专题 | 个人在本单位外知识产出 理工科技学院 |
通讯作者 | Manouchehri, Narges |
作者单位 | 1.Department of Electrical Engineering,Concordia University,Montreal,Canada 2.Concordia Institute for Information Systems Engineering,Concordia University,Montreal,Canada 3.Department of Computer Science and Technology,Huaqiao University,Xiamen,China |
推荐引用方式 GB/T 7714 | Ahmadzadeh,Mohammad Sadegh,Manouchehri, Narges,Ennajari, Hafsaet al. Entropy-Based Variational Learning of Finite Generalized Inverted Dirichlet Mixture Model[C], 2021: 130-143. |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论