科研成果详情

题名Entropy-based Variational Learning of Finite Inverted Beta-Liouville Mixture Model
作者
发表日期2021
会议名称34th International Florida Artificial Intelligence Research Society Conference, FLAIRS-34 2021
会议录名称Proceedings of the International Florida Artificial Intelligence Research Society Conference, FLAIRS
ISSN2334-0754
卷号34
会议日期May 16-19, 2021
会议地点North Miami Beach
摘要

Mixture models are a common unsupervised learning technique that have been widely used to statistically approximate and analyse heterogenous data. In this paper, an effective mixture model-based approach for positive vectors clustering and modeling is proposed. Our mixture model is based on the inverted Beta-Liouville (IBL) distribution. To deploy the proposed model, we introduce an entropy-based variational inference algorithm. The performance of the proposed model is evaluated on two real-world applications, namely, human activity recognition and image categorization.

DOI10.32473/flairs.v34i1.128379
URL查看来源
语种英语English
Scopus入藏号2-s2.0-85131132110
引用统计
文献类型会议论文
条目标识符https://repository.uic.edu.cn/handle/39GCC9TT/13038
专题个人在本单位外知识产出
理工科技学院
作者单位
1.Department of Electrical Engineering,Concordia University,Canada
2.Concordia Institute for Information Systems Engineering,Concordia University,Canada
3.Grenoble Institute of Technology,G-SCOP Lab,Grenoble,France
4.Department of Computer Science and Technology,Huaqiao University,Xiamen,China
推荐引用方式
GB/T 7714
Ahmadzadeh,Mohammad Sadegh,Manouchehri,Narges,Ennajari, Hafsaet al. Entropy-based Variational Learning of Finite Inverted Beta-Liouville Mixture Model[C], 2021.
条目包含的文件
条目无相关文件。
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Ahmadzadeh,Mohammad Sadegh]的文章
[Manouchehri,Narges]的文章
[Ennajari, Hafsa]的文章
百度学术
百度学术中相似的文章
[Ahmadzadeh,Mohammad Sadegh]的文章
[Manouchehri,Narges]的文章
[Ennajari, Hafsa]的文章
必应学术
必应学术中相似的文章
[Ahmadzadeh,Mohammad Sadegh]的文章
[Manouchehri,Narges]的文章
[Ennajari, Hafsa]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。