题名 | Entropy-based Variational Learning of Finite Inverted Beta-Liouville Mixture Model |
作者 | |
发表日期 | 2021 |
会议名称 | 34th International Florida Artificial Intelligence Research Society Conference, FLAIRS-34 2021 |
会议录名称 | Proceedings of the International Florida Artificial Intelligence Research Society Conference, FLAIRS
![]() |
ISSN | 2334-0754 |
卷号 | 34 |
会议日期 | May 16-19, 2021 |
会议地点 | North Miami Beach |
摘要 | Mixture models are a common unsupervised learning technique that have been widely used to statistically approximate and analyse heterogenous data. In this paper, an effective mixture model-based approach for positive vectors clustering and modeling is proposed. Our mixture model is based on the inverted Beta-Liouville (IBL) distribution. To deploy the proposed model, we introduce an entropy-based variational inference algorithm. The performance of the proposed model is evaluated on two real-world applications, namely, human activity recognition and image categorization. |
DOI | 10.32473/flairs.v34i1.128379 |
URL | 查看来源 |
语种 | 英语English |
Scopus入藏号 | 2-s2.0-85131132110 |
引用统计 | |
文献类型 | 会议论文 |
条目标识符 | https://repository.uic.edu.cn/handle/39GCC9TT/13038 |
专题 | 个人在本单位外知识产出 理工科技学院 |
作者单位 | 1.Department of Electrical Engineering,Concordia University,Canada 2.Concordia Institute for Information Systems Engineering,Concordia University,Canada 3.Grenoble Institute of Technology,G-SCOP Lab,Grenoble,France 4.Department of Computer Science and Technology,Huaqiao University,Xiamen,China |
推荐引用方式 GB/T 7714 | Ahmadzadeh,Mohammad Sadegh,Manouchehri,Narges,Ennajari, Hafsaet al. Entropy-based Variational Learning of Finite Inverted Beta-Liouville Mixture Model[C], 2021. |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论