科研成果详情

发表状态已发表Published
题名Modeling and Clustering Positive Vectors via Nonparametric Mixture Models of Liouville Distributions
作者
发表日期2020-09-01
发表期刊IEEE Transactions on Neural Networks and Learning Systems
ISSN/eISSN2162-237X
卷号31期号:9页码:3193-3203
摘要

In this article, we propose an effective mixture model-based approach to modeling and clustering positive data vectors. Our mixture model is based on the inverted Beta-Liouville (IBL) distribution which is extracted from the family of Liouville distributions. To cope with the problem of determining the appropriate number of clusters in our approach, a nonparametric Bayesian framework is used to extend the IBL mixture to an infinite mixture model in which the number of clusters is assumed to be infinite initially and will be inferred automatically during the learning process. To optimize the proposed model, we propose a convergence-guaranteed learning algorithm based on the averaged collapsed variational Bayes inference that can effectively learn model parameters with closed-form solutions. The effectiveness of the proposed infinite IBL mixture model for modeling and clustering positive vectors is validated through both synthetic and real-world data sets.

关键词Averaged collapsed variational Bayes (ACVB) clustering Dirichlet process inverted Beta-Liouville (IBL) distribution mixture models nonparametric Bayesian positive vectors
DOI10.1109/TNNLS.2019.2938830
URL查看来源
收录类别SCIE
语种英语English
WOS研究方向Computer Science ; Engineering
WOS类目Computer Science, Artificial Intelligence ; Computer Science, Hardware & Architecture ; Computer Science, Theory & Methods ; Engineering, Electrical & Electronic
WOS记录号WOS:000566342500005
Scopus入藏号2-s2.0-85090249504
引用统计
被引频次:28[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符https://repository.uic.edu.cn/handle/39GCC9TT/13046
专题个人在本单位外知识产出
理工科技学院
通讯作者Fan, Wentao
作者单位
1.Department of Computer Science and Technology,Huaqiao University,Xiamen,361021,China
2.Concordia Institute for Information Systems Engineering (CIISE),Concordia University,Montreal,H3G 1T7,Canada
推荐引用方式
GB/T 7714
Fan, Wentao,Bouguila, Nizar. Modeling and Clustering Positive Vectors via Nonparametric Mixture Models of Liouville Distributions[J]. IEEE Transactions on Neural Networks and Learning Systems, 2020, 31(9): 3193-3203.
APA Fan, Wentao, & Bouguila, Nizar. (2020). Modeling and Clustering Positive Vectors via Nonparametric Mixture Models of Liouville Distributions. IEEE Transactions on Neural Networks and Learning Systems, 31(9), 3193-3203.
MLA Fan, Wentao,et al."Modeling and Clustering Positive Vectors via Nonparametric Mixture Models of Liouville Distributions". IEEE Transactions on Neural Networks and Learning Systems 31.9(2020): 3193-3203.
条目包含的文件
条目无相关文件。
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Fan, Wentao]的文章
[Bouguila, Nizar]的文章
百度学术
百度学术中相似的文章
[Fan, Wentao]的文章
[Bouguila, Nizar]的文章
必应学术
必应学术中相似的文章
[Fan, Wentao]的文章
[Bouguila, Nizar]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。