发表状态 | 已发表Published |
题名 | Modeling and Clustering Positive Vectors via Nonparametric Mixture Models of Liouville Distributions |
作者 | |
发表日期 | 2020-09-01 |
发表期刊 | IEEE Transactions on Neural Networks and Learning Systems
![]() |
ISSN/eISSN | 2162-237X |
卷号 | 31期号:9页码:3193-3203 |
摘要 | In this article, we propose an effective mixture model-based approach to modeling and clustering positive data vectors. Our mixture model is based on the inverted Beta-Liouville (IBL) distribution which is extracted from the family of Liouville distributions. To cope with the problem of determining the appropriate number of clusters in our approach, a nonparametric Bayesian framework is used to extend the IBL mixture to an infinite mixture model in which the number of clusters is assumed to be infinite initially and will be inferred automatically during the learning process. To optimize the proposed model, we propose a convergence-guaranteed learning algorithm based on the averaged collapsed variational Bayes inference that can effectively learn model parameters with closed-form solutions. The effectiveness of the proposed infinite IBL mixture model for modeling and clustering positive vectors is validated through both synthetic and real-world data sets. |
关键词 | Averaged collapsed variational Bayes (ACVB) clustering Dirichlet process inverted Beta-Liouville (IBL) distribution mixture models nonparametric Bayesian positive vectors |
DOI | 10.1109/TNNLS.2019.2938830 |
URL | 查看来源 |
收录类别 | SCIE |
语种 | 英语English |
WOS研究方向 | Computer Science ; Engineering |
WOS类目 | Computer Science, Artificial Intelligence ; Computer Science, Hardware & Architecture ; Computer Science, Theory & Methods ; Engineering, Electrical & Electronic |
WOS记录号 | WOS:000566342500005 |
Scopus入藏号 | 2-s2.0-85090249504 |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | https://repository.uic.edu.cn/handle/39GCC9TT/13046 |
专题 | 个人在本单位外知识产出 理工科技学院 |
通讯作者 | Fan, Wentao |
作者单位 | 1.Department of Computer Science and Technology,Huaqiao University,Xiamen,361021,China 2.Concordia Institute for Information Systems Engineering (CIISE),Concordia University,Montreal,H3G 1T7,Canada |
推荐引用方式 GB/T 7714 | Fan, Wentao,Bouguila, Nizar. Modeling and Clustering Positive Vectors via Nonparametric Mixture Models of Liouville Distributions[J]. IEEE Transactions on Neural Networks and Learning Systems, 2020, 31(9): 3193-3203. |
APA | Fan, Wentao, & Bouguila, Nizar. (2020). Modeling and Clustering Positive Vectors via Nonparametric Mixture Models of Liouville Distributions. IEEE Transactions on Neural Networks and Learning Systems, 31(9), 3193-3203. |
MLA | Fan, Wentao,et al."Modeling and Clustering Positive Vectors via Nonparametric Mixture Models of Liouville Distributions". IEEE Transactions on Neural Networks and Learning Systems 31.9(2020): 3193-3203. |
条目包含的文件 | 条目无相关文件。 |
个性服务 |
查看访问统计 |
谷歌学术 |
谷歌学术中相似的文章 |
[Fan, Wentao]的文章 |
[Bouguila, Nizar]的文章 |
百度学术 |
百度学术中相似的文章 |
[Fan, Wentao]的文章 |
[Bouguila, Nizar]的文章 |
必应学术 |
必应学术中相似的文章 |
[Fan, Wentao]的文章 |
[Bouguila, Nizar]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论