科研成果详情

发表状态已发表Published
题名Unsupervised Video Object Segmentation Based on Mixture Models and Saliency Detection
作者
发表日期2020-02-01
发表期刊Neural Processing Letters
ISSN/eISSN1370-4621
卷号51期号:1页码:657-674
摘要

In this paper, we propose an unsupervised video object segmentation approach which is mainly based on a saliency detection method and the Gaussian mixture model with Markov random field. In our approach, the saliency detection method is developed as a preprocessing technique to calculate the probability of each pixel as the target object. In contrast to traditional saliency detection methods which are normally difficult to obtain the object’s precise boundary and are therefore hard to segment consistent objects, the developed saliency detection method can calculate the saliency of each frame in the video sequence and extract the position and region of the target object with more accurate object boundary. The refined extracted object region is then taken as the prior information and incorporated into the Gaussian mixture model with Markov random field to obtain the precise pixel-wise segmentation result of each frame. The effectiveness of the proposed unsupervised video object segmentation approach is validated through experimental results using both the SegTrack and the SegTrack v2 data sets.

关键词Gaussian mixture model Markov random field saliency detection Video object segmentation
DOI10.1007/s11063-019-10110-z
URL查看来源
收录类别SCIE
语种英语English
WOS研究方向Computer Science
WOS类目Computer Science, Artificial Intelligence
WOS记录号WOS:000528790900033
Scopus入藏号2-s2.0-85072045360
引用统计
被引频次:8[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符https://repository.uic.edu.cn/handle/39GCC9TT/13049
专题个人在本单位外知识产出
理工科技学院
通讯作者Fan, Wentao
作者单位
Department of Computer Science and Technology,Huaqiao University,Xiamen,China
推荐引用方式
GB/T 7714
Lin, Guofeng,Fan, Wentao. Unsupervised Video Object Segmentation Based on Mixture Models and Saliency Detection[J]. Neural Processing Letters, 2020, 51(1): 657-674.
APA Lin, Guofeng, & Fan, Wentao. (2020). Unsupervised Video Object Segmentation Based on Mixture Models and Saliency Detection. Neural Processing Letters, 51(1), 657-674.
MLA Lin, Guofeng,et al."Unsupervised Video Object Segmentation Based on Mixture Models and Saliency Detection". Neural Processing Letters 51.1(2020): 657-674.
条目包含的文件
条目无相关文件。
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Lin, Guofeng]的文章
[Fan, Wentao]的文章
百度学术
百度学术中相似的文章
[Lin, Guofeng]的文章
[Fan, Wentao]的文章
必应学术
必应学术中相似的文章
[Lin, Guofeng]的文章
[Fan, Wentao]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。