发表状态 | 已发表Published |
题名 | A novel statistical approach for clustering positive data based on finite inverted Beta-Liouville mixture models |
作者 | |
发表日期 | 2019-03-14 |
发表期刊 | Neurocomputing
![]() |
ISSN/eISSN | 0925-2312 |
卷号 | 333页码:110-123 |
摘要 | Nowadays, a great number of positive data has been occurred naturally in many applications, however, it was not adequately analyzed. In this article, we propose a novel statistical approach for clustering multivariate positive data. Our approach is based on a finite mixture model of inverted Beta-Liouville (IBL) distributions, which is proper choice for modeling and analysis of positive vector data. We develop two different approaches to learn the proposed mixture model. Firstly, the maximum likelihood (ML) is utilized to estimate parameters of the finite inverted Beta-Liouville mixture model in which the right number of mixture components is determined according to the minimum message length (MML) criterion. Secondly, the variational Bayes (VB) is adopted to learn our model where the parameters and the number of mixture components can be determined simultaneously in a unified framework, without the requirement of using information criteria. We investigate the effectiveness of our model by conducting a series of experiments on both synthetic and real data sets. |
关键词 | Clustering Inverted Beta-Liouville Maximum likelihood Minimum message length Mixture models Variational Bayes |
DOI | 10.1016/j.neucom.2018.12.066 |
URL | 查看来源 |
收录类别 | SCIE |
语种 | 英语English |
WOS研究方向 | Computer Science |
WOS类目 | Computer Science, Artificial Intelligence |
WOS记录号 | WOS:000456834100011 |
Scopus入藏号 | 2-s2.0-85059614407 |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | https://repository.uic.edu.cn/handle/39GCC9TT/13060 |
专题 | 个人在本单位外知识产出 理工科技学院 |
通讯作者 | Fan, Wentao |
作者单位 | 1.Department of Computer Science and Technology,Huaqiao University,Xiamen,China 2.Information Systems Engineering (CIISE),Concordia University,Montreal,Canada |
推荐引用方式 GB/T 7714 | Hu, Can,Fan, Wentao,Du, Jixianget al. A novel statistical approach for clustering positive data based on finite inverted Beta-Liouville mixture models[J]. Neurocomputing, 2019, 333: 110-123. |
APA | Hu, Can, Fan, Wentao, Du, Jixiang, & Bouguila, Nizar. (2019). A novel statistical approach for clustering positive data based on finite inverted Beta-Liouville mixture models. Neurocomputing, 333, 110-123. |
MLA | Hu, Can,et al."A novel statistical approach for clustering positive data based on finite inverted Beta-Liouville mixture models". Neurocomputing 333(2019): 110-123. |
条目包含的文件 | 条目无相关文件。 |
个性服务 |
查看访问统计 |
谷歌学术 |
谷歌学术中相似的文章 |
[Hu, Can]的文章 |
[Fan, Wentao]的文章 |
[Du, Jixiang]的文章 |
百度学术 |
百度学术中相似的文章 |
[Hu, Can]的文章 |
[Fan, Wentao]的文章 |
[Du, Jixiang]的文章 |
必应学术 |
必应学术中相似的文章 |
[Hu, Can]的文章 |
[Fan, Wentao]的文章 |
[Du, Jixiang]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论