科研成果详情

发表状态已发表Published
题名A novel statistical approach for clustering positive data based on finite inverted Beta-Liouville mixture models
作者
发表日期2019-03-14
发表期刊Neurocomputing
ISSN/eISSN0925-2312
卷号333页码:110-123
摘要

Nowadays, a great number of positive data has been occurred naturally in many applications, however, it was not adequately analyzed. In this article, we propose a novel statistical approach for clustering multivariate positive data. Our approach is based on a finite mixture model of inverted Beta-Liouville (IBL) distributions, which is proper choice for modeling and analysis of positive vector data. We develop two different approaches to learn the proposed mixture model. Firstly, the maximum likelihood (ML) is utilized to estimate parameters of the finite inverted Beta-Liouville mixture model in which the right number of mixture components is determined according to the minimum message length (MML) criterion. Secondly, the variational Bayes (VB) is adopted to learn our model where the parameters and the number of mixture components can be determined simultaneously in a unified framework, without the requirement of using information criteria. We investigate the effectiveness of our model by conducting a series of experiments on both synthetic and real data sets.

关键词Clustering Inverted Beta-Liouville Maximum likelihood Minimum message length Mixture models Variational Bayes
DOI10.1016/j.neucom.2018.12.066
URL查看来源
收录类别SCIE
语种英语English
WOS研究方向Computer Science
WOS类目Computer Science, Artificial Intelligence
WOS记录号WOS:000456834100011
Scopus入藏号2-s2.0-85059614407
引用统计
被引频次:35[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符https://repository.uic.edu.cn/handle/39GCC9TT/13060
专题个人在本单位外知识产出
理工科技学院
通讯作者Fan, Wentao
作者单位
1.Department of Computer Science and Technology,Huaqiao University,Xiamen,China
2.Information Systems Engineering (CIISE),Concordia University,Montreal,Canada
推荐引用方式
GB/T 7714
Hu, Can,Fan, Wentao,Du, Jixianget al. A novel statistical approach for clustering positive data based on finite inverted Beta-Liouville mixture models[J]. Neurocomputing, 2019, 333: 110-123.
APA Hu, Can, Fan, Wentao, Du, Jixiang, & Bouguila, Nizar. (2019). A novel statistical approach for clustering positive data based on finite inverted Beta-Liouville mixture models. Neurocomputing, 333, 110-123.
MLA Hu, Can,et al."A novel statistical approach for clustering positive data based on finite inverted Beta-Liouville mixture models". Neurocomputing 333(2019): 110-123.
条目包含的文件
条目无相关文件。
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Hu, Can]的文章
[Fan, Wentao]的文章
[Du, Jixiang]的文章
百度学术
百度学术中相似的文章
[Hu, Can]的文章
[Fan, Wentao]的文章
[Du, Jixiang]的文章
必应学术
必应学术中相似的文章
[Hu, Can]的文章
[Fan, Wentao]的文章
[Du, Jixiang]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。