题名 | A Novel Approach for Anomaly Event Detection in Videos Based on Autoencoders and SE Networks |
作者 | |
发表日期 | 2018-07-02 |
会议名称 | 9th International Symposium on Signal, Image, Video and Communications (ISIVC) |
会议录名称 | 9th International Symposium on Signal, Image, Video and Communications, ISIVC 2018 - Proceedings
![]() |
页码 | 179-184 |
会议日期 | NOV 27-30, 2018 |
会议地点 | Univ Mohammed V, Fac Sci, Rabat, MOROCCO |
摘要 | In the paper, we develop an unsupervised learning approach for anomaly event detection in videos based on a 3D ConvNet encoder-decoder for extracting spatial features and a ConvLSTM encoder-decoder for learning the temporal evolution of the spatial features. Moreover, squeeze-and-excitation networks (SENet) is incorporated into our model to take global information of each frame into account. In training, our model only includes normal events of video, whereas in testing, the videos have both normal events and abnormal events. The effectiveness of the proposed approach for anomaly event detection is validated through experiments on the UCSD datasets. |
关键词 | 3D Convolutional network Anomaly event detection autoencoder convolutional neural networks squeeze-and-excitation networks |
DOI | 10.1109/ISIVC.2018.8709229 |
URL | 查看来源 |
收录类别 | CPCI-S |
语种 | 英语English |
WOS研究方向 | Engineering ; Telecommunications |
WOS类目 | Engineering, Electrical & Electronic ; Telecommunications |
WOS记录号 | WOS:000474729600033 |
Scopus入藏号 | 2-s2.0-85065994470 |
引用统计 | |
文献类型 | 会议论文 |
条目标识符 | https://repository.uic.edu.cn/handle/39GCC9TT/13069 |
专题 | 个人在本单位外知识产出 理工科技学院 |
作者单位 | 1.Computer Science and Technology,Huaqiao University,Xiamen,China 2.Electrical and Computer Engineering,Concordia University,Montreal,Canada |
推荐引用方式 GB/T 7714 | Fu, Jiangpeng,Fan, Wentao,Bouguila, Nizar. A Novel Approach for Anomaly Event Detection in Videos Based on Autoencoders and SE Networks[C], 2018: 179-184. |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论