科研成果详情

发表状态已发表Published
题名A Novel Model-Based Approach for Medical Image Segmentation Using Spatially Constrained Inverted Dirichlet Mixture Models
作者
发表日期2018-04-01
发表期刊Neural Processing Letters
ISSN/eISSN1370-4621
卷号47期号:2页码:619-639
摘要

In this paper, we present a novel statistical approach to medical image segmentation. This approach is based on finite mixture models with spatial smoothness constrains. The main advantages of the proposed approach can be summarized as follows. Firstly, the proposed model is based on inverted Dirichlet mixture models, which have demonstrated better performance in modeling positive data (e.g., images) than Gaussian mixture models. Secondly, we integrate spatial relationships between pixels with the inverted Dirichlet mixture model, which makes it more robust against noise and image contrast levels. Finally, we develop a variational Bayes method to learn the proposed model, such that the model parameters and model complexity (i.e., the number of mixture components) can be estimated simultaneously in a unified framework. The performance of the proposed approach in medical image segmentation is compared with some state-of-the-art segmentation approaches through various numerical experiments on both simulated and real medical images.

关键词Image segmentation Inverted Dirichlet Mixture models MRI image Variational Bayes
DOI10.1007/s11063-017-9672-9
URL查看来源
收录类别SCIE
语种英语English
WOS研究方向Computer Science
WOS类目Computer Science, Artificial Intelligence
WOS记录号WOS:000428818000016
Scopus入藏号2-s2.0-85023762987
引用统计
被引频次:8[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符https://repository.uic.edu.cn/handle/39GCC9TT/13071
专题个人在本单位外知识产出
理工科技学院
通讯作者Fan, Wentao
作者单位
1.Department of Computer Science and Technology,Huaqiao University,Xiamen,China
2.Concordia Institute for Information Systems Engineering (CIISE),Concordia University,Montreal,Canada
推荐引用方式
GB/T 7714
Fan, Wentao,Hu, Can,Du, Jixianget al. A Novel Model-Based Approach for Medical Image Segmentation Using Spatially Constrained Inverted Dirichlet Mixture Models[J]. Neural Processing Letters, 2018, 47(2): 619-639.
APA Fan, Wentao, Hu, Can, Du, Jixiang, & Bouguila, Nizar. (2018). A Novel Model-Based Approach for Medical Image Segmentation Using Spatially Constrained Inverted Dirichlet Mixture Models. Neural Processing Letters, 47(2), 619-639.
MLA Fan, Wentao,et al."A Novel Model-Based Approach for Medical Image Segmentation Using Spatially Constrained Inverted Dirichlet Mixture Models". Neural Processing Letters 47.2(2018): 619-639.
条目包含的文件
条目无相关文件。
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Fan, Wentao]的文章
[Hu, Can]的文章
[Du, Jixiang]的文章
百度学术
百度学术中相似的文章
[Fan, Wentao]的文章
[Hu, Can]的文章
[Du, Jixiang]的文章
必应学术
必应学术中相似的文章
[Fan, Wentao]的文章
[Hu, Can]的文章
[Du, Jixiang]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。