发表状态 | 已发表Published |
题名 | A Novel Model-Based Approach for Medical Image Segmentation Using Spatially Constrained Inverted Dirichlet Mixture Models |
作者 | |
发表日期 | 2018-04-01 |
发表期刊 | Neural Processing Letters
![]() |
ISSN/eISSN | 1370-4621 |
卷号 | 47期号:2页码:619-639 |
摘要 | In this paper, we present a novel statistical approach to medical image segmentation. This approach is based on finite mixture models with spatial smoothness constrains. The main advantages of the proposed approach can be summarized as follows. Firstly, the proposed model is based on inverted Dirichlet mixture models, which have demonstrated better performance in modeling positive data (e.g., images) than Gaussian mixture models. Secondly, we integrate spatial relationships between pixels with the inverted Dirichlet mixture model, which makes it more robust against noise and image contrast levels. Finally, we develop a variational Bayes method to learn the proposed model, such that the model parameters and model complexity (i.e., the number of mixture components) can be estimated simultaneously in a unified framework. The performance of the proposed approach in medical image segmentation is compared with some state-of-the-art segmentation approaches through various numerical experiments on both simulated and real medical images. |
关键词 | Image segmentation Inverted Dirichlet Mixture models MRI image Variational Bayes |
DOI | 10.1007/s11063-017-9672-9 |
URL | 查看来源 |
收录类别 | SCIE |
语种 | 英语English |
WOS研究方向 | Computer Science |
WOS类目 | Computer Science, Artificial Intelligence |
WOS记录号 | WOS:000428818000016 |
Scopus入藏号 | 2-s2.0-85023762987 |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | https://repository.uic.edu.cn/handle/39GCC9TT/13071 |
专题 | 个人在本单位外知识产出 理工科技学院 |
通讯作者 | Fan, Wentao |
作者单位 | 1.Department of Computer Science and Technology,Huaqiao University,Xiamen,China 2.Concordia Institute for Information Systems Engineering (CIISE),Concordia University,Montreal,Canada |
推荐引用方式 GB/T 7714 | Fan, Wentao,Hu, Can,Du, Jixianget al. A Novel Model-Based Approach for Medical Image Segmentation Using Spatially Constrained Inverted Dirichlet Mixture Models[J]. Neural Processing Letters, 2018, 47(2): 619-639. |
APA | Fan, Wentao, Hu, Can, Du, Jixiang, & Bouguila, Nizar. (2018). A Novel Model-Based Approach for Medical Image Segmentation Using Spatially Constrained Inverted Dirichlet Mixture Models. Neural Processing Letters, 47(2), 619-639. |
MLA | Fan, Wentao,et al."A Novel Model-Based Approach for Medical Image Segmentation Using Spatially Constrained Inverted Dirichlet Mixture Models". Neural Processing Letters 47.2(2018): 619-639. |
条目包含的文件 | 条目无相关文件。 |
个性服务 |
查看访问统计 |
谷歌学术 |
谷歌学术中相似的文章 |
[Fan, Wentao]的文章 |
[Hu, Can]的文章 |
[Du, Jixiang]的文章 |
百度学术 |
百度学术中相似的文章 |
[Fan, Wentao]的文章 |
[Hu, Can]的文章 |
[Du, Jixiang]的文章 |
必应学术 |
必应学术中相似的文章 |
[Fan, Wentao]的文章 |
[Hu, Can]的文章 |
[Du, Jixiang]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论