发表状态 | 已发表Published |
题名 | Model-Based segmentation of image data using spatially constrained mixture models |
作者 | |
发表日期 | 2018-03-29 |
发表期刊 | Neurocomputing
![]() |
ISSN/eISSN | 0925-2312 |
卷号 | 283页码:214-227 |
摘要 | In this paper, a novel Bayesian statistical approach is proposed to tackle the problem of natural image segmentation. The proposed approach is based on finite Dirichlet mixture models in which contextual proportions (i.e., the probabilities of class labels) are modeled with spatial smoothness constraints. The major merits of our approach are summarized as follows: Firstly, it exploits the Dirichlet mixture model which can obtain a better statistical performance than commonly used mixture models (such as the Gaussian mixture model), especially for proportional data (i.e, normalized histogram). Secondly, it explicitly models the mixing contextual proportions as probability vectors and simultaneously integrate spatial relationship between pixels into the Dirichlet mixture model, which results in a more robust framework for image segmentation. Finally, we develop a variational Bayes learning method to update the parameters in a closed-form expression. The effectiveness of the proposed approach is compared with other mixture modeling-based image segmentation approaches through extensive experiments that involve both simulated and natural color images. |
关键词 | Bayesian statistical model Dirichlet mixture model Image segmentation Spatial smoothness constraints Variational Bayes |
DOI | 10.1016/j.neucom.2017.12.033 |
URL | 查看来源 |
收录类别 | SCIE |
语种 | 英语English |
WOS研究方向 | Computer Science |
WOS类目 | Computer Science, Artificial Intelligence |
WOS记录号 | WOS:000424896600020 |
Scopus入藏号 | 2-s2.0-85039936909 |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | https://repository.uic.edu.cn/handle/39GCC9TT/13072 |
专题 | 个人在本单位外知识产出 理工科技学院 |
通讯作者 | Fan, Wentao |
作者单位 | Department of Computer Science and Technology,Huaqiao University,Xiamen,China |
推荐引用方式 GB/T 7714 | Hu, Can,Fan, Wentao,Du, Jixianget al. Model-Based segmentation of image data using spatially constrained mixture models[J]. Neurocomputing, 2018, 283: 214-227. |
APA | Hu, Can, Fan, Wentao, Du, Jixiang, & Zeng, Yuchen. (2018). Model-Based segmentation of image data using spatially constrained mixture models. Neurocomputing, 283, 214-227. |
MLA | Hu, Can,et al."Model-Based segmentation of image data using spatially constrained mixture models". Neurocomputing 283(2018): 214-227. |
条目包含的文件 | 条目无相关文件。 |
个性服务 |
查看访问统计 |
谷歌学术 |
谷歌学术中相似的文章 |
[Hu, Can]的文章 |
[Fan, Wentao]的文章 |
[Du, Jixiang]的文章 |
百度学术 |
百度学术中相似的文章 |
[Hu, Can]的文章 |
[Fan, Wentao]的文章 |
[Du, Jixiang]的文章 |
必应学术 |
必应学术中相似的文章 |
[Hu, Can]的文章 |
[Fan, Wentao]的文章 |
[Du, Jixiang]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论