科研成果详情

题名A Contrastive Method for Continual Generalized Zero-Shot Learning
作者
发表日期2023
会议名称36th International Conference on Industrial, Engineering and Other Applications of Applied Intelligent Systems (IEA/AIE)
会议录名称Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
ISSN0302-9743
卷号13925 LNAI
页码365-376
会议日期JUL 19-22, 2023
会议地点Shanghai, PEOPLES R CHINA
摘要

Generalized zero-shot learning (GZSL) aims to train a model that can classify seen and unseen samples based on semantic information. Continual learning, as one of the factors distinguishing artificial intelligence, has received more and more attention in recent years. In this paper, we propose a deep learning model based on a conditional generative model and a contrastive learning framework that can continuously learn from incoming data. In the training phase, knowledge distillation and generative replay mechanisms are used to accumulate past knowledge. In the testing phase, the test samples are mapped to the embedding space to perform generalized zero-shot classification task. Our model not only does not require additional buffers to store data so that it will not cause data leakage problems, but also through experiments show that our model can achieve state-of-the-art results on three benchmark datasets. The source code of the proposed model is available at: https://github.com/liangchen976/CCGZSL.

关键词Continuous Learning Contrastive Learning Deep Learning Generalized Zero-shot learning Generative Adversarial Networks
DOI10.1007/978-3-031-36819-6_32
URL查看来源
收录类别SCIE
语种英语English
WOS研究方向Computer Science
WOS类目Computer Science, Artificial Intelligence ; Computer Science, Interdisciplinary Applications ; Computer Science, Theory & Methods
WOS记录号WOS:001327651400032
Scopus入藏号2-s2.0-85172419939
引用统计
被引频次:1[WOS]   [WOS记录]     [WOS相关记录]
文献类型会议论文
条目标识符https://repository.uic.edu.cn/handle/39GCC9TT/13089
专题理工科技学院
通讯作者Fan, Wentao
作者单位
1.Department of Computer Science and Technology,Huaqiao University,Quanzhou,China
2.Department of Computer Science,Beijing Normal University-Hong Kong Baptist University United International College (BNU-HKBU UIC),Zhuhai,China
3.Guangdong Provincial Key Laboratory of Interdisciplinary Research and Application for Data Science,BNU-HKBU United International College,Zhuhai,China
通讯作者单位北师香港浸会大学
推荐引用方式
GB/T 7714
Liang, Chen,Fan, Wentao,Liu, Xinet al. A Contrastive Method for Continual Generalized Zero-Shot Learning[C], 2023: 365-376.
条目包含的文件
条目无相关文件。
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Liang, Chen]的文章
[Fan, Wentao]的文章
[Liu, Xin]的文章
百度学术
百度学术中相似的文章
[Liang, Chen]的文章
[Fan, Wentao]的文章
[Liu, Xin]的文章
必应学术
必应学术中相似的文章
[Liang, Chen]的文章
[Fan, Wentao]的文章
[Liu, Xin]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。