科研成果详情

发表状态已发表Published
题名Robust unsupervised image categorization based on variational autoencoder with disentangled latent representations
作者
发表日期2022-06-21
发表期刊Knowledge-Based Systems
ISSN/eISSN0950-7051
卷号246
摘要

Recently, deep generative models have been successfully applied to unsupervised clustering analyses, due to the model capabilities for learning good representations of the input data from a lower-dimensional latent space. In this work, we propose a robust deep generative clustering method based on a variational autoencoder (VAE) for unsupervised image categorization. The merits of our method can be summarized as follows. First, each latent representation generated by the encoder is disentangled into the cluster representation and generation representation, where the cluster representation is responsible for preserving the clustering information, while the generation representation is responsible for conserving the generation information. Thus, by only utilizing the cluster representation, we can improve the performance and efficiency of clustering tasks without interference from generating tasks. Second, a Student's-t mixture model is adopted as the prior over the cluster representation to enhance the robustness of our method against clustering outliers. Third, we propose a biaugmentation module to promote the training stability for our model. In contrast with most of the existing deep generative clustering methods that require a pretraining step to stabilize the training process, our model is able to provide a stable training process through feature disentanglement and data augmentation. We validate the proposed robust deep generative clustering method through extensive experiments by comparing it with state-of-the-art methods on unsupervised image categorization.

关键词Clustering Disentangled latent representations Mixture model Robust training Student's-t distribution Variational autoencoder (VAE)
DOI10.1016/j.knosys.2022.108671
URL查看来源
收录类别SCIE
语种英语English
WOS研究方向Computer Science
WOS类目Computer Science, Artificial Intelligence
WOS记录号WOS:000795588200001
Scopus入藏号2-s2.0-85127787013
引用统计
被引频次:5[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符https://repository.uic.edu.cn/handle/39GCC9TT/13096
专题个人在本单位外知识产出
理工科技学院
通讯作者Fan, Wentao
作者单位
1.Department of Computer Science and Technology,Huaqiao University,Xiamen,China
2.The Concordia Institute for Information Systems Engineering (CIISE),Concordia University,Montreal, QC,Canada
推荐引用方式
GB/T 7714
Yang, Lin,Fan, Wentao,Bouguila, Nizar. Robust unsupervised image categorization based on variational autoencoder with disentangled latent representations[J]. Knowledge-Based Systems, 2022, 246.
APA Yang, Lin, Fan, Wentao, & Bouguila, Nizar. (2022). Robust unsupervised image categorization based on variational autoencoder with disentangled latent representations. Knowledge-Based Systems, 246.
MLA Yang, Lin,et al."Robust unsupervised image categorization based on variational autoencoder with disentangled latent representations". Knowledge-Based Systems 246(2022).
条目包含的文件
条目无相关文件。
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Yang, Lin]的文章
[Fan, Wentao]的文章
[Bouguila, Nizar]的文章
百度学术
百度学术中相似的文章
[Yang, Lin]的文章
[Fan, Wentao]的文章
[Bouguila, Nizar]的文章
必应学术
必应学术中相似的文章
[Yang, Lin]的文章
[Fan, Wentao]的文章
[Bouguila, Nizar]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。