题名 | Stochastic Expectation Propagation Learning for Unsupervised Feature Selection |
作者 | |
发表日期 | 2022 |
会议名称 | 14th International Conference on Computational Collective Intelligence (ICCCI) |
会议录名称 | Communications in Computer and Information Science
![]() |
ISSN | 1865-0929 |
卷号 | 1653 CCIS |
页码 | 674-686 |
会议日期 | SEP 28-30, 2022 |
会议地点 | ACM Special Interest Grp Appl Comp, French SIGAPP Chapter, Hammamet, TUNISIA |
摘要 | We introduce a statistical procedure for the simultaneous clustering and feature selection of positive vectors. The proposed method is based on well-principled infinite generalized inverted Dirichlet (GID) mixture models. Unlike most currently existing learning algorithms, based on frequentist or Bayesian approaches, that have been proposed for GID mixtures, our framework is based on stochastic expectation propagation that offers a good compromise. The performance of the proposed algorithm is examined using both simulated and real world data sets. |
关键词 | Clustering Feature selection Mixture models Stochastic expectation propagation |
DOI | 10.1007/978-3-031-16210-7_55 |
URL | 查看来源 |
收录类别 | CPCI-S |
语种 | 英语English |
WOS研究方向 | Computer Science |
WOS类目 | Computer Science, Artificial Intelligence ; Computer Science, Interdisciplinary Applications ; Computer Science, Theory & Methods |
WOS记录号 | WOS:000871953900055 |
Scopus入藏号 | 2-s2.0-85140453044 |
引用统计 | |
文献类型 | 会议论文 |
条目标识符 | https://repository.uic.edu.cn/handle/39GCC9TT/13102 |
专题 | 个人在本单位外知识产出 理工科技学院 |
通讯作者 | Bouguila, Nizar |
作者单位 | 1.Computer Science and Technology,Huaqiao University,Xiamen,China 2.Univ. Grenoble Alpes,CNRS,Grenoble INP (Institute of Engineering Univ.),G-SCOP,Grenoble,38000,France 3.CIISE,Concordia University,Montreal,Canada |
推荐引用方式 GB/T 7714 | Fan, Wentao,Amayri, Manar,Bouguila, Nizar. Stochastic Expectation Propagation Learning for Unsupervised Feature Selection[C], 2022: 674-686. |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论