科研成果详情

题名Stochastic Expectation Propagation Learning for Unsupervised Feature Selection
作者
发表日期2022
会议名称14th International Conference on Computational Collective Intelligence (ICCCI)
会议录名称Communications in Computer and Information Science
ISSN1865-0929
卷号1653 CCIS
页码674-686
会议日期SEP 28-30, 2022
会议地点ACM Special Interest Grp Appl Comp, French SIGAPP Chapter, Hammamet, TUNISIA
摘要

We introduce a statistical procedure for the simultaneous clustering and feature selection of positive vectors. The proposed method is based on well-principled infinite generalized inverted Dirichlet (GID) mixture models. Unlike most currently existing learning algorithms, based on frequentist or Bayesian approaches, that have been proposed for GID mixtures, our framework is based on stochastic expectation propagation that offers a good compromise. The performance of the proposed algorithm is examined using both simulated and real world data sets.

关键词Clustering Feature selection Mixture models Stochastic expectation propagation
DOI10.1007/978-3-031-16210-7_55
URL查看来源
收录类别CPCI-S
语种英语English
WOS研究方向Computer Science
WOS类目Computer Science, Artificial Intelligence ; Computer Science, Interdisciplinary Applications ; Computer Science, Theory & Methods
WOS记录号WOS:000871953900055
Scopus入藏号2-s2.0-85140453044
引用统计
文献类型会议论文
条目标识符https://repository.uic.edu.cn/handle/39GCC9TT/13102
专题个人在本单位外知识产出
理工科技学院
通讯作者Bouguila, Nizar
作者单位
1.Computer Science and Technology,Huaqiao University,Xiamen,China
2.Univ. Grenoble Alpes,CNRS,Grenoble INP (Institute of Engineering Univ.),G-SCOP,Grenoble,38000,France
3.CIISE,Concordia University,Montreal,Canada
推荐引用方式
GB/T 7714
Fan, Wentao,Amayri, Manar,Bouguila, Nizar. Stochastic Expectation Propagation Learning for Unsupervised Feature Selection[C], 2022: 674-686.
条目包含的文件
条目无相关文件。
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Fan, Wentao]的文章
[Amayri, Manar]的文章
[Bouguila, Nizar]的文章
百度学术
百度学术中相似的文章
[Fan, Wentao]的文章
[Amayri, Manar]的文章
[Bouguila, Nizar]的文章
必应学术
必应学术中相似的文章
[Fan, Wentao]的文章
[Amayri, Manar]的文章
[Bouguila, Nizar]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。