科研成果详情

发表状态已发表Published
题名Unsupervised hybrid feature extraction selection for high-dimensional non-Gaussian data clustering with variational inference
作者
发表日期2013
发表期刊IEEE Transactions on Knowledge and Data Engineering
ISSN/eISSN1041-4347
卷号25期号:7页码:1670-1685
摘要

Clustering has been a subject of extensive research in data mining, pattern recognition, and other areas for several decades. The main goal is to assign samples, which are typically non-Gaussian and expressed as points in high-dimensional feature spaces, to one of a number of clusters. It is well known that in such high-dimensional settings, the existence of irrelevant features generally compromises modeling capabilities. In this paper, we propose a variational inference framework for unsupervised non-Gaussian feature selection, in the context of finite generalized Dirichlet (GD) mixture-based clustering. Under the proposed principled variational framework, we simultaneously estimate, in a closed form, all the involved parameters and determine the complexity (i.e., both model an feature selection) of the GD mixture. Extensive simulations using synthetic data along with an analysis of real-world data and human action videos demonstrate that our variational approach achieves better results than comparable techniques. © 1989-2012 IEEE.

关键词Bayesian estimation feature selection generalized Dirichlet human action videos Mixture models model selection unsupervised learning variational inference
DOI10.1109/TKDE.2012.101
URL查看来源
收录类别SCIE
语种英语English
WOS研究方向Computer Science ; Engineering
WOS类目Computer Science, Artificial Intelligence ; Computer Science, Information Systems ; Engineering, Electrical & Electronic
WOS记录号WOS:000319461800018
Scopus入藏号2-s2.0-84878296503
引用统计
被引频次:37[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符https://repository.uic.edu.cn/handle/39GCC9TT/13110
专题个人在本单位外知识产出
理工科技学院
作者单位
1.Concordia Institute for Information Systems Engineering,Faculty of Engineering and Computer Science,Concordia University,1455 de Maisonneuve Blvd. West, EV-007-632,Montreal, QC H3G 1M8,Canada
2.Département d'Informatique, Faculté des Sciences,Université de Sherbrooke,2500 boulevard de l'Université,Sherbrooke, QC J1K 2R1,Canada
推荐引用方式
GB/T 7714
Fan, Wentao,Bouguila, Nizar,Ziou, Djemel. Unsupervised hybrid feature extraction selection for high-dimensional non-Gaussian data clustering with variational inference[J]. IEEE Transactions on Knowledge and Data Engineering, 2013, 25(7): 1670-1685.
APA Fan, Wentao, Bouguila, Nizar, & Ziou, Djemel. (2013). Unsupervised hybrid feature extraction selection for high-dimensional non-Gaussian data clustering with variational inference. IEEE Transactions on Knowledge and Data Engineering, 25(7), 1670-1685.
MLA Fan, Wentao,et al."Unsupervised hybrid feature extraction selection for high-dimensional non-Gaussian data clustering with variational inference". IEEE Transactions on Knowledge and Data Engineering 25.7(2013): 1670-1685.
条目包含的文件
条目无相关文件。
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Fan, Wentao]的文章
[Bouguila, Nizar]的文章
[Ziou, Djemel]的文章
百度学术
百度学术中相似的文章
[Fan, Wentao]的文章
[Bouguila, Nizar]的文章
[Ziou, Djemel]的文章
必应学术
必应学术中相似的文章
[Fan, Wentao]的文章
[Bouguila, Nizar]的文章
[Ziou, Djemel]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。