发表状态 | 已发表Published |
题名 | Spatially variant mixture model for natural image segmentation |
作者 | |
发表日期 | 2017-07-01 |
发表期刊 | Journal of Electronic Imaging
![]() |
ISSN/eISSN | 1017-9909 |
卷号 | 26期号:4 |
摘要 | We tackle the problem of natural image segmentation by proposing a statistical approach that is based on spatially variant finite mixture models with generalized means. The contributions can be summarized as follows: first, the proposed spatially variant mixture model exploits beta-Liouville as basic distributions for describing the underlying data structure, which demonstrated better segmentation performance than commonly used distributions, such as Gaussian; second, the mixing proportions (i.e., the probabilities of class labels) in our model are modeled via the Dirichlet compound multinomial probability density, and the spatial smoothness is imposed by adopting the function of generalized mean over the mixture model as well as mixing proportions; and finally, a variational Bayes learning approach is developed to estimate model parameters and model complexity simultaneously with closed-form solutions. The robustness, accuracy, and effectiveness of the proposed model in image segmentation are demonstrated through experiments on both natural images and synthetic images degraded by noise compared with other state-of-the-art image segmentation methods. |
关键词 | beta-Liouville finite mixture model image segmentation variational Bayes |
DOI | 10.1117/1.JEI.26.4.043005 |
URL | 查看来源 |
收录类别 | SCIE |
语种 | 英语English |
WOS研究方向 | Engineering ; Optics ; Imaging Science & Photographic Technology |
WOS类目 | Engineering, Electrical & Electronic ; Optics ; Imaging Science & Photographic Technology |
WOS记录号 | WOS:000413982300005 |
Scopus入藏号 | 2-s2.0-85024476572 |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | https://repository.uic.edu.cn/handle/39GCC9TT/13121 |
专题 | 个人在本单位外知识产出 理工科技学院 |
通讯作者 | Fan, Wentao |
作者单位 | Huaqiao University,Department of Computer Science and Technology,Xiamen,China |
推荐引用方式 GB/T 7714 | Hu, Can,Fan, Wentao,Du, Jixianget al. Spatially variant mixture model for natural image segmentation[J]. Journal of Electronic Imaging, 2017, 26(4). |
APA | Hu, Can, Fan, Wentao, Du, Jixiang, & Xie, Nan. (2017). Spatially variant mixture model for natural image segmentation. Journal of Electronic Imaging, 26(4). |
MLA | Hu, Can,et al."Spatially variant mixture model for natural image segmentation". Journal of Electronic Imaging 26.4(2017). |
条目包含的文件 | 条目无相关文件。 |
个性服务 |
查看访问统计 |
谷歌学术 |
谷歌学术中相似的文章 |
[Hu, Can]的文章 |
[Fan, Wentao]的文章 |
[Du, Jixiang]的文章 |
百度学术 |
百度学术中相似的文章 |
[Hu, Can]的文章 |
[Fan, Wentao]的文章 |
[Du, Jixiang]的文章 |
必应学术 |
必应学术中相似的文章 |
[Hu, Can]的文章 |
[Fan, Wentao]的文章 |
[Du, Jixiang]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论