科研成果详情

发表状态已发表Published
题名Spatially variant mixture model for natural image segmentation
作者
发表日期2017-07-01
发表期刊Journal of Electronic Imaging
ISSN/eISSN1017-9909
卷号26期号:4
摘要

We tackle the problem of natural image segmentation by proposing a statistical approach that is based on spatially variant finite mixture models with generalized means. The contributions can be summarized as follows: first, the proposed spatially variant mixture model exploits beta-Liouville as basic distributions for describing the underlying data structure, which demonstrated better segmentation performance than commonly used distributions, such as Gaussian; second, the mixing proportions (i.e., the probabilities of class labels) in our model are modeled via the Dirichlet compound multinomial probability density, and the spatial smoothness is imposed by adopting the function of generalized mean over the mixture model as well as mixing proportions; and finally, a variational Bayes learning approach is developed to estimate model parameters and model complexity simultaneously with closed-form solutions. The robustness, accuracy, and effectiveness of the proposed model in image segmentation are demonstrated through experiments on both natural images and synthetic images degraded by noise compared with other state-of-the-art image segmentation methods.

关键词beta-Liouville finite mixture model image segmentation variational Bayes
DOI10.1117/1.JEI.26.4.043005
URL查看来源
收录类别SCIE
语种英语English
WOS研究方向Engineering ; Optics ; Imaging Science & Photographic Technology
WOS类目Engineering, Electrical & Electronic ; Optics ; Imaging Science & Photographic Technology
WOS记录号WOS:000413982300005
Scopus入藏号2-s2.0-85024476572
引用统计
被引频次:1[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符https://repository.uic.edu.cn/handle/39GCC9TT/13121
专题个人在本单位外知识产出
理工科技学院
通讯作者Fan, Wentao
作者单位
Huaqiao University,Department of Computer Science and Technology,Xiamen,China
推荐引用方式
GB/T 7714
Hu, Can,Fan, Wentao,Du, Jixianget al. Spatially variant mixture model for natural image segmentation[J]. Journal of Electronic Imaging, 2017, 26(4).
APA Hu, Can, Fan, Wentao, Du, Jixiang, & Xie, Nan. (2017). Spatially variant mixture model for natural image segmentation. Journal of Electronic Imaging, 26(4).
MLA Hu, Can,et al."Spatially variant mixture model for natural image segmentation". Journal of Electronic Imaging 26.4(2017).
条目包含的文件
条目无相关文件。
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Hu, Can]的文章
[Fan, Wentao]的文章
[Du, Jixiang]的文章
百度学术
百度学术中相似的文章
[Hu, Can]的文章
[Fan, Wentao]的文章
[Du, Jixiang]的文章
必应学术
必应学术中相似的文章
[Hu, Can]的文章
[Fan, Wentao]的文章
[Du, Jixiang]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。