科研成果详情

题名Approximation algorithms for the maximum weight internal spanning tree problem
作者
发表日期2017
会议录名称Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
ISSN0302-9743
卷号10392 LNCS
页码124-136
摘要Given a vertex-weighted connected graph G = (V, E), the maximum weight internal spanning tree (MwIST for short) problem asks for a spanning tree T of G such that the total weight of the internal vertices in T is maximized. The unweighted variant, denoted as MIST, is NP-hard and APX-hard, and the currently best approximation algorithm has a proven performance ratio 13/17. The currently best approximation algorithm for MwIST only has a performance ratio 1/3 - \epsilon , for any \epsilon > 0. In this paper, we present a simple algorithm based on a novel relationship between MwIST and the maximum weight matching, and show that it achieves a better approximation ratio of 1/2. When restricted to claw-free graphs, a special case been previously studied, we design a 7/12-approximation algorithm.
关键词Approximation algorithm Maximum weight internal spanning tree Maximum weight matching Performance analysis
DOI10.1007/978-3-319-62389-4_11
URL查看来源
语种英语English
Scopus入藏号2-s2.0-85028473531
引用统计
文献类型会议论文
条目标识符https://repository.uic.edu.cn/handle/39GCC9TT/13128
专题个人在本单位外知识产出
作者单位
1.Division of Information System Design,Tokyo Denki University,Hatoyama,350-0394,Japan
2.Department of Computing Science,University of Alberta,Edmonton,T6G 2E8,Canada
3.Department of Computer Science,City University of Hong Kong,Kowloon,Tat Chee Avenue,Hong Kong
推荐引用方式
GB/T 7714
Chen,Zhi Zhong,Lin,Guohui,Wang,Lushenget al. Approximation algorithms for the maximum weight internal spanning tree problem[C], 2017: 124-136.
条目包含的文件
条目无相关文件。
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Chen,Zhi Zhong]的文章
[Lin,Guohui]的文章
[Wang,Lusheng]的文章
百度学术
百度学术中相似的文章
[Chen,Zhi Zhong]的文章
[Lin,Guohui]的文章
[Wang,Lusheng]的文章
必应学术
必应学术中相似的文章
[Chen,Zhi Zhong]的文章
[Lin,Guohui]的文章
[Wang,Lusheng]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。