科研成果详情

发表状态已发表Published
题名Blind Image Quality Assessment: Exploring Content Fidelity Perceptibility via Quality Adversarial Learning
作者
发表日期2025-06-01
发表期刊International Journal of Computer Vision
ISSN/eISSN0920-5691
卷号133期号:6页码:3242-3258
摘要

In deep learning-based no-reference image quality assessment (NR-IQA) methods, the absence of reference images limits their ability to assess content fidelity, making it difficult to distinguish between original content and distortions that degrade quality. To address this issue, we propose a quality adversarial learning framework emphasizing both content fidelity and prediction accuracy. The main contributions of this study are as follows: First, we investigate the importance of content fidelity, especially in no-reference scenarios. Second, we propose a quality adversarial learning framework that dynamically adapts and refines the image quality assessment process on the basis of the quality optimization results. The framework generates adversarial samples for the quality prediction model, and simultaneously, the quality prediction model optimizes the quality prediction model by using these adversarial samples to maintain fidelity and improve accuracy. Finally, we demonstrate that by employing the quality prediction model as a loss function for image quality optimization, our framework effectively reduces the generation of artifacts, highlighting its superior ability to preserve content fidelity. The experimental results demonstrate the validity of our method compared with state-of-the-art NR-IQA methods. The code is publicly available at the following website: https://github.com/Land5cape/QAL-IQA.

关键词Content fidelity Image quality assessment No reference Quality adversarial learning
DOI10.1007/s11263-024-02338-7
URL查看来源
收录类别SCIE
语种英语English
WOS研究方向Computer Science
WOS类目Computer Science, Artificial Intelligence
WOS记录号WOS:001388906500001
Scopus入藏号2-s2.0-85213994791
引用统计
被引频次:22[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符https://repository.uic.edu.cn/handle/39GCC9TT/13264
专题理工科技学院
通讯作者Zhou, Mingliang
作者单位
1.School of Computer Science,Chongqing University,Chongqing,400044,China
2.State Key Laboratory of Mechanical Transmissions,Chongqing University,Chongqing,400044,China
3.BNU-UIC Institute of Artificial Intelligence and Future Networks Beijing Normal University Zhuhai and Guangdong Key Lab of AI Multi-Modal Data Processing BNU-HKBU United International College Zhuhai,Zhuhai,Guangdong,519087,China
推荐引用方式
GB/T 7714
Zhou, Mingliang,Shen, Wenhao,Wei, Xuekaiet al. Blind Image Quality Assessment: Exploring Content Fidelity Perceptibility via Quality Adversarial Learning[J]. International Journal of Computer Vision, 2025, 133(6): 3242-3258.
APA Zhou, Mingliang., Shen, Wenhao., Wei, Xuekai., Luo, Jun., Jia, Fan., .. & Jia, Weijia. (2025). Blind Image Quality Assessment: Exploring Content Fidelity Perceptibility via Quality Adversarial Learning. International Journal of Computer Vision, 133(6), 3242-3258.
MLA Zhou, Mingliang,et al."Blind Image Quality Assessment: Exploring Content Fidelity Perceptibility via Quality Adversarial Learning". International Journal of Computer Vision 133.6(2025): 3242-3258.
条目包含的文件
条目无相关文件。
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Zhou, Mingliang]的文章
[Shen, Wenhao]的文章
[Wei, Xuekai]的文章
百度学术
百度学术中相似的文章
[Zhou, Mingliang]的文章
[Shen, Wenhao]的文章
[Wei, Xuekai]的文章
必应学术
必应学术中相似的文章
[Zhou, Mingliang]的文章
[Shen, Wenhao]的文章
[Wei, Xuekai]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。