科研成果详情

题名A hashing image retrieval method based on deep learning and local feature fusion
作者
发表日期2017
会议名称13th International Conference on Intelligent Computing (ICIC)
会议录名称Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
ISSN0302-9743
卷号10361 LNCS
页码200-210
会议日期AUG 07-10, 2017
会议地点Liverpool, ENGLAND
摘要

The multimedia information such as images and videos has been growing rapidly, how to efficiently retrieve large-scale image dataset to meet user needs is an urgent problem. The traditional method has the problem of slow retrieval and low accuracy on large-scale datasets, we propose an effective deep learning framework to generate binary hash codes for fast image retrieval, our idea is to fuse local features maps of different layers in convolutional neural networks (CNNs), and the binary hash codes can be learned by employing a hidden layer. Additionally, we train the network by combining cross entropy loss function with the triplet loss function to get better features. The approximate nearest neighbor search strategy is used to improve the quality and speed of retrieval. Experimental results show that our method outperforms several state-of-the-art hashing image retrieval algorithms on the MNIST and CIFAR-10 datasets. At last, we further demonstrate its scalability and efficacy on the CUB200-2011 and Stanford Dogs fine-grained classification datasets.

关键词Approximate nearest neighbor Deep learning Fuse local features Hashing image retrieval
DOI10.1007/978-3-319-63309-1_19
URL查看来源
收录类别CPCI-S
语种英语English
WOS研究方向Computer Science
WOS类目Computer Science, Artificial Intelligence
WOS记录号WOS:000441208400019
Scopus入藏号2-s2.0-85027681756
引用统计
文献类型会议论文
条目标识符https://repository.uic.edu.cn/handle/39GCC9TT/13270
专题个人在本单位外知识产出
理工科技学院
作者单位
Department of Computer Science and Technology,Huaqiao University,Xiamen,361021,China
推荐引用方式
GB/T 7714
Nie, Yiliang,Du, Jixiang,Fan, Wentao. A hashing image retrieval method based on deep learning and local feature fusion[C], 2017: 200-210.
条目包含的文件
条目无相关文件。
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Nie, Yiliang]的文章
[Du, Jixiang]的文章
[Fan, Wentao]的文章
百度学术
百度学术中相似的文章
[Nie, Yiliang]的文章
[Du, Jixiang]的文章
[Fan, Wentao]的文章
必应学术
必应学术中相似的文章
[Nie, Yiliang]的文章
[Du, Jixiang]的文章
[Fan, Wentao]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。