科研成果详情

发表状态已发表Published
题名A hierarchical Dirichlet process mixture of generalized Dirichlet distributions for feature selection
作者
发表日期2015-04-01
发表期刊Computers and Electrical Engineering
ISSN/eISSN0045-7906
卷号43页码:48-65
摘要

This paper addresses the problem of identifying meaningful patterns and trends in data via clustering (i.e. automatically dividing a data set into meaningful homogenous sub-groups such that the data within the same sub-group are very similar, and data in different sub-groups are very different). The clustering framework that we propose is based on the generalized Dirichlet distribution, which is widely accepted as a flexible modeling approach, and a hierarchical Dirichlet process mixture prior. A main advantage of the adopted hierarchical Dirichlet process is that it provides a principled elegant nonparametric Bayesian approach to model selection by supposing that the number of mixture components can go to infinity. In addition to capturing the structure of the data, the combination of hierarchical Dirichlet process and generalized Dirichlet distribution is shown to offer a natural efficient solution to the feature selection problem when dealing with high-dimensional data. We develop two variational learning approaches (i.e. batch and incremental) for learning the parameters of the proposed model. The batch algorithm examines the entire data set at once while the incremental one learns the model one step at a time (i.e. update the model's parameters each time new data are introduced). The utility of the proposed approach is demonstrated on real applications namely face detection, facial expression recognition, human gesture recognition, and off-line writer identification. The obtained results show clearly the merits of our statistical framework.

关键词Clustering Face detection Facial expression recognition Hierarchical Dirichlet process Human gesture recognition Variational learning
DOI10.1016/j.compeleceng.2015.03.018
URL查看来源
收录类别SCIE
语种英语English
WOS研究方向Computer Science ; Engineering
WOS类目Computer Science, Hardware & Architecture ; Computer Science, Interdisciplinary Applications ; Engineering, Electrical & Electronic
WOS记录号WOS:000357708400005
Scopus入藏号2-s2.0-84983315598
引用统计
被引频次:16[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符https://repository.uic.edu.cn/handle/39GCC9TT/13284
专题个人在本单位外知识产出
理工科技学院
通讯作者Bouguila, Nizar
作者单位
1.Department of Computer Science and Technology,Huaqiao University,China
2.College of Computer and Information Systems,Umm Al-Qura University,Saudi Arabia
3.The Concordia Institute for Information Systems Engineering (CIISE),Concordia University,Montreal,H3G 1T7,Canada
4.Taif University,Taif,Saudi Arabia
推荐引用方式
GB/T 7714
Fan, Wentao,Sallay, Hassen,Bouguila, Nizaret al. A hierarchical Dirichlet process mixture of generalized Dirichlet distributions for feature selection[J]. Computers and Electrical Engineering, 2015, 43: 48-65.
APA Fan, Wentao, Sallay, Hassen, Bouguila, Nizar, & Bourouis, Sami. (2015). A hierarchical Dirichlet process mixture of generalized Dirichlet distributions for feature selection. Computers and Electrical Engineering, 43, 48-65.
MLA Fan, Wentao,et al."A hierarchical Dirichlet process mixture of generalized Dirichlet distributions for feature selection". Computers and Electrical Engineering 43(2015): 48-65.
条目包含的文件
条目无相关文件。
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Fan, Wentao]的文章
[Sallay, Hassen]的文章
[Bouguila, Nizar]的文章
百度学术
百度学术中相似的文章
[Fan, Wentao]的文章
[Sallay, Hassen]的文章
[Bouguila, Nizar]的文章
必应学术
必应学术中相似的文章
[Fan, Wentao]的文章
[Sallay, Hassen]的文章
[Bouguila, Nizar]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。