科研成果详情

发表状态已发表Published
题名Infinite Dirichlet mixture models learning via expectation propagation
作者
发表日期2013
发表期刊Advances in Data Analysis and Classification
ISSN/eISSN1862-5347
卷号7期号:4页码:465-489
摘要

In this article, we propose a novel Bayesian nonparametric clustering algorithm based on a Dirichlet process mixture of Dirichlet distributions which have been shown to be very flexible for modeling proportional data. The idea is to let the number of mixture components increases as new data to cluster arrive in such a manner that the model selection problem (i.e. determination of the number of clusters) can be answered without recourse to classic selection criteria. Thus, the proposed model can be considered as an infinite Dirichlet mixture model. An expectation propagation inference framework is developed to learn this model by obtaining a full posterior distribution on its parameters. Within this learning framework, the model complexity and all the involved parameters are evaluated simultaneously. To show the practical relevance and efficiency of our model, we perform a detailed analysis using extensive simulations based on both synthetic and real data. In particular, real data are generated from three challenging applications namely images categorization, anomaly intrusion detection and videos summarization. © 2013 Springer-Verlag Berlin Heidelberg.

关键词Anomaly intrusion detection Clustering Dirichlet process Expectation propagation Images categorization Mixture model Videos summarization
DOI10.1007/s11634-013-0152-4
URL查看来源
收录类别SCIE
语种英语English
WOS研究方向Mathematics
WOS类目Statistics & Probability
WOS记录号WOS:000327869600006
Scopus入藏号2-s2.0-84888425377
引用统计
被引频次:4[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符https://repository.uic.edu.cn/handle/39GCC9TT/13301
专题个人在本单位外知识产出
理工科技学院
通讯作者Bouguila, Nizar
作者单位
1.Department of Electrical and Computer Engineering,Concordia University,Montreal, QC,Canada
2.Concordia Institute for Information Systems Engineering (CIISE),Concordia University,Montreal, QC,Canada
推荐引用方式
GB/T 7714
Fan, Wentao,Bouguila, Nizar. Infinite Dirichlet mixture models learning via expectation propagation[J]. Advances in Data Analysis and Classification, 2013, 7(4): 465-489.
APA Fan, Wentao, & Bouguila, Nizar. (2013). Infinite Dirichlet mixture models learning via expectation propagation. Advances in Data Analysis and Classification, 7(4), 465-489.
MLA Fan, Wentao,et al."Infinite Dirichlet mixture models learning via expectation propagation". Advances in Data Analysis and Classification 7.4(2013): 465-489.
条目包含的文件
条目无相关文件。
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Fan, Wentao]的文章
[Bouguila, Nizar]的文章
百度学术
百度学术中相似的文章
[Fan, Wentao]的文章
[Bouguila, Nizar]的文章
必应学术
必应学术中相似的文章
[Fan, Wentao]的文章
[Bouguila, Nizar]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。