发表状态 | 已发表Published |
题名 | Infinite Dirichlet mixture models learning via expectation propagation |
作者 | |
发表日期 | 2013 |
发表期刊 | Advances in Data Analysis and Classification
![]() |
ISSN/eISSN | 1862-5347 |
卷号 | 7期号:4页码:465-489 |
摘要 | In this article, we propose a novel Bayesian nonparametric clustering algorithm based on a Dirichlet process mixture of Dirichlet distributions which have been shown to be very flexible for modeling proportional data. The idea is to let the number of mixture components increases as new data to cluster arrive in such a manner that the model selection problem (i.e. determination of the number of clusters) can be answered without recourse to classic selection criteria. Thus, the proposed model can be considered as an infinite Dirichlet mixture model. An expectation propagation inference framework is developed to learn this model by obtaining a full posterior distribution on its parameters. Within this learning framework, the model complexity and all the involved parameters are evaluated simultaneously. To show the practical relevance and efficiency of our model, we perform a detailed analysis using extensive simulations based on both synthetic and real data. In particular, real data are generated from three challenging applications namely images categorization, anomaly intrusion detection and videos summarization. © 2013 Springer-Verlag Berlin Heidelberg. |
关键词 | Anomaly intrusion detection Clustering Dirichlet process Expectation propagation Images categorization Mixture model Videos summarization |
DOI | 10.1007/s11634-013-0152-4 |
URL | 查看来源 |
收录类别 | SCIE |
语种 | 英语English |
WOS研究方向 | Mathematics |
WOS类目 | Statistics & Probability |
WOS记录号 | WOS:000327869600006 |
Scopus入藏号 | 2-s2.0-84888425377 |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | https://repository.uic.edu.cn/handle/39GCC9TT/13301 |
专题 | 个人在本单位外知识产出 理工科技学院 |
通讯作者 | Bouguila, Nizar |
作者单位 | 1.Department of Electrical and Computer Engineering,Concordia University,Montreal, QC,Canada 2.Concordia Institute for Information Systems Engineering (CIISE),Concordia University,Montreal, QC,Canada |
推荐引用方式 GB/T 7714 | Fan, Wentao,Bouguila, Nizar. Infinite Dirichlet mixture models learning via expectation propagation[J]. Advances in Data Analysis and Classification, 2013, 7(4): 465-489. |
APA | Fan, Wentao, & Bouguila, Nizar. (2013). Infinite Dirichlet mixture models learning via expectation propagation. Advances in Data Analysis and Classification, 7(4), 465-489. |
MLA | Fan, Wentao,et al."Infinite Dirichlet mixture models learning via expectation propagation". Advances in Data Analysis and Classification 7.4(2013): 465-489. |
条目包含的文件 | 条目无相关文件。 |
个性服务 |
查看访问统计 |
谷歌学术 |
谷歌学术中相似的文章 |
[Fan, Wentao]的文章 |
[Bouguila, Nizar]的文章 |
百度学术 |
百度学术中相似的文章 |
[Fan, Wentao]的文章 |
[Bouguila, Nizar]的文章 |
必应学术 |
必应学术中相似的文章 |
[Fan, Wentao]的文章 |
[Bouguila, Nizar]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论