科研成果详情

题名An ANN-Guided Approach to Task-Free Continual Learning with Spiking Neural Networks
作者
发表日期2024
会议名称6th Chinese Conference on Pattern Recognition and Computer Vision (PRCV)
会议录名称PATTERN RECOGNITION AND COMPUTER VISION, PRCV 2023, PT VIII
卷号14432
页码217-228
会议日期OCT 13-15, 2023
会议地点Xiamen Univ, Xiamen, PEOPLES R CHINA
摘要

Task-Free Continual Learning (TFCL) poses a formidable challenge in lifelong learning, as it operates without task-specific information. Leveraging spiking neural networks (SNNs) for TFCL is particularly intriguing due to their promising results in low-energy applications. However, existing research has predominantly focused on employing SNNs for solving single-task classification problems. In this work, our goal is to utilize ANN to guide SNN in addressing catastrophic forgetting and model compression issues, while treating SNNs as the basic network of the model. We introduce AGT-SNN (ANN-Guided TFCL for Spiking Neural Networks), a novel framework that empowers SNNs to engage in lifelong learning without relying on task-specific information. We conceptualize the learning process of the model as a multiplayer game, involving participants in the roles of players and referees. Our model's fundamental components comprise player-referee pairs, where the player module adopts a SNN-based Variational Autoencoder (VAE) and the referee module employs a ANN-based Generative Adversarial Network (GAN). To dynamically expand the number of components, we propose an innovative method called Adversarial Similarity Expansion (ASE). ASE evaluates the performance of the current player against previously learned players without accessing any task-specific information. Additionally, we propose a innovative pruning strategy that selectively removes redundant components while preserving the diversity of knowledge, thereby reducing the model's complexity. Through comprehensive experimental validation, we demonstrate that our proposed framework enables SNNs to achieve exceptional performance while maintaining an appropriate network size.

DOI10.1007/978-981-99-8543-2_18
URL查看来源
收录类别CPCI-S
语种英语English
WOS研究方向Computer Science
WOS类目Computer Science, Artificial Intelligence ; Computer Science, Information Systems ; Computer Science, Theory & Methods
WOS记录号WOS:001155051900018
引用统计
文献类型会议论文
条目标识符https://repository.uic.edu.cn/handle/39GCC9TT/13318
专题理工科技学院
通讯作者Fan, Wentao
作者单位
1.Huaqiao Univ, Dept Comp Sci & Technol, Xiamen, Peoples R China
2.Beijing Normal Univ Kong Baptist Univ BNU HKBU, Guangdong Prov Key Lab IRADS, Zhuhai, Peoples R China
3.Normal University-Hong Kong Baptist University (BNU-HKBU) United International College, Zhuhai, China
通讯作者单位北师香港浸会大学
推荐引用方式
GB/T 7714
Zhang, Jie,Fan, Wentao,Liu, Xin. An ANN-Guided Approach to Task-Free Continual Learning with Spiking Neural Networks[C], 2024: 217-228.
条目包含的文件
条目无相关文件。
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Zhang, Jie]的文章
[Fan, Wentao]的文章
[Liu, Xin]的文章
百度学术
百度学术中相似的文章
[Zhang, Jie]的文章
[Fan, Wentao]的文章
[Liu, Xin]的文章
必应学术
必应学术中相似的文章
[Zhang, Jie]的文章
[Fan, Wentao]的文章
[Liu, Xin]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。