科研成果详情

题名API sequences based malware detection for android
作者
发表日期2016-07-20
会议名称2015 IEEE 12th International Conference on Ubiquitous Intelligence and Computing, 2015 IEEE 12th International Conference on Advanced and Trusted Computing, 2015 IEEE 15th International Conference on Scalable Computing and Communications, 2015 IEEE International Conference on Cloud and Big Data Computing, 2015 IEEE International Conference on Internet of People and Associated Symposia/Workshops, UIC-ATC-ScalCom-CBDCom-IoP 2015
会议录名称Proceedings - 2015 IEEE 12th International Conference on Ubiquitous Intelligence and Computing, 2015 IEEE 12th International Conference on Advanced and Trusted Computing, 2015 IEEE 15th International Conference on Scalable Computing and Communications, 2015 IEEE International Conference on Cloud and Big Data Computing, 2015 IEEE International Conference on Internet of People and Associated Symposia/Workshops, UIC-ATC-ScalCom-CBDCom-IoP 2015
会议录编者Jianhua Ma, Laurence T. Yang, Huansheng Ning, and Ali Li
ISBN9781467372114
页码673-676
会议日期10-14 Aug. 2015
会议地点Beijing, China
出版者The Institute of Electrical and Electronics Engineers, Inc
摘要

To mitigate security problem brought by Android malware, various work has been proposed such as behavior based malware detection and data mining based malware detection. In this paper, we put forward a novel Android malware detection model using data mining techniques. We design an algorithm with two steps. The first step is modeling Android application code into graph structure, called API control flow graph by us. Next step is calculating API sequences fulfilling minimum intra-family support in each malware family because malware in malware family usually share similar behavior pattern. Finally, supervised learning method is took advantage in building our malware detecting model with API sequences as input features. We evaluate this model with 1200 applications, half of them are malicious and half are benign, and find it effective in identifying Android malware and even unknown malware.

关键词Android malware Data mining Feature selection Malware family
DOI10.1109/UIC-ATC-ScalCom-CBDCom-IoP.2015.135
URL查看来源
收录类别CPCI-S
语种英语English
WOS研究方向Computer Science
WOS类目Computer Science, Artificial Intelligence ; Computer Science, Information Systems ; Computer Science, Interdisciplinary Applications ; Computer Science, Theory & Methods
WOS记录号WOS:000411670500111
Scopus入藏号2-s2.0-84983433948
引用统计
被引频次:10[WOS]   [WOS记录]     [WOS相关记录]
文献类型会议论文
条目标识符https://repository.uic.edu.cn/handle/39GCC9TT/13505
专题个人在本单位外知识产出
通讯作者Guan, Zhi
作者单位
1.Institute of Software,School of EECS,Peking University,Beijing,China
2.MoE Key Lab of High Confidence Software Technologies (PKU),Beijing,China
3.MoE Key Lab of Network and Software Security Assurance (PKU),Beijing,China
4.China Academy of Information and Communications Technology,Beijing,China
推荐引用方式
GB/T 7714
Zhu, Jiawei,Wu, Zhengang,Guan, Zhiet al. API sequences based malware detection for android[C]//Jianhua Ma, Laurence T. Yang, Huansheng Ning, and Ali Li: The Institute of Electrical and Electronics Engineers, Inc, 2016: 673-676.
条目包含的文件
条目无相关文件。
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Zhu, Jiawei]的文章
[Wu, Zhengang]的文章
[Guan, Zhi]的文章
百度学术
百度学术中相似的文章
[Zhu, Jiawei]的文章
[Wu, Zhengang]的文章
[Guan, Zhi]的文章
必应学术
必应学术中相似的文章
[Zhu, Jiawei]的文章
[Wu, Zhengang]的文章
[Guan, Zhi]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。