科研成果详情

题名Markov-chain based performance analysis method for scalar multiplication on elliptic curve
作者
发表日期2004
发表期刊Tien Tzu Hsueh Pao/Acta Electronica Sinica
ISSN/eISSN0372-2112
卷号32期号:11页码:1778-1781
摘要The canonical re-coding and sliding window techniques are often used in computation of scalar multiplication k·P on elliptic curves for reducing the average number of required operation. Scalar multiplication with canonical re-coding and sliding window techniques is analyzed by modeling the window partition process of canonical re-coding expression of k as Markov-chain, the average performance of scalar multiplication under different parameters are given and the optimal window sizes are computed. Finally, the comparison shows that scalar multiplication with canonical re-coding and sliding window techniques requires 10.32-17.32% fewer operations than m-ary method, and 4.53-8.40% fewer operations than simple sliding window method.
关键词Canonical re-coding Elliptic curve cryptosystem Markov-chain Scalar multiplication Sliding window
URL查看来源
语种英语English
Scopus入藏号2-s2.0-12144282687
引用统计
文献类型期刊论文
条目标识符https://repository.uic.edu.cn/handle/39GCC9TT/13590
专题个人在本单位外知识产出
通讯作者Tang,Wen
作者单位
Sch. of Electron. Eng.,Peking Univ.,Beijing 100871,China
推荐引用方式
GB/T 7714
Tang,Wen,Tang,Li Yong,Chen,Zhong. Markov-chain based performance analysis method for scalar multiplication on elliptic curve[J]. Tien Tzu Hsueh Pao/Acta Electronica Sinica, 2004, 32(11): 1778-1781.
APA Tang,Wen, Tang,Li Yong, & Chen,Zhong. (2004). Markov-chain based performance analysis method for scalar multiplication on elliptic curve. Tien Tzu Hsueh Pao/Acta Electronica Sinica, 32(11), 1778-1781.
MLA Tang,Wen,et al."Markov-chain based performance analysis method for scalar multiplication on elliptic curve". Tien Tzu Hsueh Pao/Acta Electronica Sinica 32.11(2004): 1778-1781.
条目包含的文件
条目无相关文件。
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Tang,Wen]的文章
[Tang,Li Yong]的文章
[Chen,Zhong]的文章
百度学术
百度学术中相似的文章
[Tang,Wen]的文章
[Tang,Li Yong]的文章
[Chen,Zhong]的文章
必应学术
必应学术中相似的文章
[Tang,Wen]的文章
[Tang,Li Yong]的文章
[Chen,Zhong]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。