科研成果详情

题名Application of Oversampling Techniques Under Neyman-Pearson Paradigm on Credit Card Fraud Detection
作者
发表日期2025
会议名称20th International Conference on Advanced Data Mining Applications, ADMA 2024
会议录名称Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
ISSN0302-9743
卷号15387 LNAI
页码19-32
会议日期2024-12-03—2024-12-03
会议地点Sydney
摘要

The task of detecting credit card fraud represents a substantial hurdle in the realm of financial risk management, primarily due to the inherent imbalance of data between fraudulent (positive) and regular (negative) transactions. This imbalance can result in erroneous judgments and considerable financial losses. To mitigate this issue, we propose an effective classification strategy specifically designed for credit card fraud detection in this paper. The goal of our research is to regulate the rate of false negatives (Type I errors) while simultaneously minimizing the rate of false positives (Type II errors). We leverage the Neyman-Pearson paradigm and integrate several high-precision oversampling methods to equilibrate the training dataset, thereby enhancing the accuracy of fraud detection. To assess the efficacy of our proposed methodology, we perform exhaustive numerical analyses on a notably imbalanced European Credit Card dataset. Moreover, we modify the imbalance ratio to offer practical perspectives on the performance of our approach. The numerical outcomes demonstrate that our proposed methodology exhibits commendable performance.

关键词Credit Card Fraud detection Imbalanced Classification Neyman-Pearson Paradigm Oversampling Methods
DOI10.1007/978-981-96-0811-9_2
URL查看来源
语种英语English
Scopus入藏号2-s2.0-85213379074
引用统计
文献类型会议论文
条目标识符https://repository.uic.edu.cn/handle/39GCC9TT/13649
专题理工科技学院
通讯作者Zhou, Min
作者单位
Beijing Normal University-Hong Kong Baptist University United International College,Zhuhai,Guangdong,China
第一作者单位北师香港浸会大学
通讯作者单位北师香港浸会大学
推荐引用方式
GB/T 7714
Huang, Chujun,Chen, Suijing,Wu, Youet al. Application of Oversampling Techniques Under Neyman-Pearson Paradigm on Credit Card Fraud Detection[C], 2025: 19-32.
条目包含的文件
条目无相关文件。
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Huang, Chujun]的文章
[Chen, Suijing]的文章
[Wu, You]的文章
百度学术
百度学术中相似的文章
[Huang, Chujun]的文章
[Chen, Suijing]的文章
[Wu, You]的文章
必应学术
必应学术中相似的文章
[Huang, Chujun]的文章
[Chen, Suijing]的文章
[Wu, You]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。