发表状态 | 已发表Published |
题名 | Characterizing the stabilization size for semi-implicit fourier-spectral method to phase field equations |
作者 | |
发表日期 | 2016 |
发表期刊 | SIAM Journal on Numerical Analysis
![]() |
ISSN/eISSN | 0036-1429 |
卷号 | 54期号:3页码:1653-1681 |
摘要 | Recent results in the literature provide computational evidence that the stabilized semi-implicit time-stepping method can eficiently simulate phase field problems involving fourth order nonlinear diffusion, with typical examples like the Cahn-Hilliard equation and the thin film type equation. The up-to-date theoretical explanation of the numerical stability relies on the assumption that the derivative of the nonlinear potential function satisfies a Lipschitz-type condition, which in a rigorous sense, implies the boundedness of the numerical solution. In this work we remove the Lipschitz assumption on the nonlinearity and prove unconditional energy stability for the stabilized semi-implicit time-stepping methods. It is shown that the size of the stabilization term depends on the initial energy and the perturbation parameter but is independent of the time step. The corresponding error analysis is also established under minimal nonlinearity and regularity assumptions. |
关键词 | Cahn-Hilliard Energy stable Epitaxy Large time stepping Thin film |
DOI | 10.1137/140993193 |
URL | 查看来源 |
收录类别 | SCIE |
语种 | 英语English |
WOS研究方向 | Mathematics |
WOS类目 | Mathematics, Applied |
WOS记录号 | WOS:000385026000015 |
SciVal 热门主题 | T.15825 |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | https://repository.uic.edu.cn/handle/39GCC9TT/1788 |
专题 | 个人在本单位外知识产出 |
通讯作者 | Li, Dong |
作者单位 | 1.Department of Mathematics, University of British Columbia, Vancouver, BC V6T1Z2, Canada 2.Department of Applied Mathematics, Hong Kong Polytechnic University, Hung Hom, Hong Kong 3.Department of Mathematics, South University of Science and Technology, Shenzhen, Guangdong, 518055, China 4.Department of Mathematics, Hong Kong Baptist University, Kowloon, Hong Kong |
推荐引用方式 GB/T 7714 | Li, Dong,Qiao, Zhonghua,Tang, Tao. Characterizing the stabilization size for semi-implicit fourier-spectral method to phase field equations[J]. SIAM Journal on Numerical Analysis, 2016, 54(3): 1653-1681. |
APA | Li, Dong, Qiao, Zhonghua, & Tang, Tao. (2016). Characterizing the stabilization size for semi-implicit fourier-spectral method to phase field equations. SIAM Journal on Numerical Analysis, 54(3), 1653-1681. |
MLA | Li, Dong,et al."Characterizing the stabilization size for semi-implicit fourier-spectral method to phase field equations". SIAM Journal on Numerical Analysis 54.3(2016): 1653-1681. |
条目包含的文件 | 条目无相关文件。 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论