科研成果详情

发表状态已发表Published
题名Characterizing the stabilization size for semi-implicit fourier-spectral method to phase field equations
作者
发表日期2016
发表期刊SIAM Journal on Numerical Analysis
ISSN/eISSN0036-1429
卷号54期号:3页码:1653-1681
摘要

Recent results in the literature provide computational evidence that the stabilized semi-implicit time-stepping method can eficiently simulate phase field problems involving fourth order nonlinear diffusion, with typical examples like the Cahn-Hilliard equation and the thin film type equation. The up-to-date theoretical explanation of the numerical stability relies on the assumption that the derivative of the nonlinear potential function satisfies a Lipschitz-type condition, which in a rigorous sense, implies the boundedness of the numerical solution. In this work we remove the Lipschitz assumption on the nonlinearity and prove unconditional energy stability for the stabilized semi-implicit time-stepping methods. It is shown that the size of the stabilization term depends on the initial energy and the perturbation parameter but is independent of the time step. The corresponding error analysis is also established under minimal nonlinearity and regularity assumptions. 

关键词Cahn-Hilliard Energy stable Epitaxy Large time stepping Thin film
DOI10.1137/140993193
URL查看来源
收录类别SCIE
语种英语English
WOS研究方向Mathematics
WOS类目Mathematics, Applied
WOS记录号WOS:000385026000015
SciVal 热门主题T.15825
引用统计
被引频次:135[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符https://repository.uic.edu.cn/handle/39GCC9TT/1788
专题个人在本单位外知识产出
通讯作者Li, Dong
作者单位
1.Department of Mathematics, University of British Columbia, Vancouver, BC V6T1Z2, Canada
2.Department of Applied Mathematics, Hong Kong Polytechnic University, Hung Hom, Hong Kong
3.Department of Mathematics, South University of Science and Technology, Shenzhen, Guangdong, 518055, China
4.Department of Mathematics, Hong Kong Baptist University, Kowloon, Hong Kong
推荐引用方式
GB/T 7714
Li, Dong,Qiao, Zhonghua,Tang, Tao. Characterizing the stabilization size for semi-implicit fourier-spectral method to phase field equations[J]. SIAM Journal on Numerical Analysis, 2016, 54(3): 1653-1681.
APA Li, Dong, Qiao, Zhonghua, & Tang, Tao. (2016). Characterizing the stabilization size for semi-implicit fourier-spectral method to phase field equations. SIAM Journal on Numerical Analysis, 54(3), 1653-1681.
MLA Li, Dong,et al."Characterizing the stabilization size for semi-implicit fourier-spectral method to phase field equations". SIAM Journal on Numerical Analysis 54.3(2016): 1653-1681.
条目包含的文件
条目无相关文件。
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Li, Dong]的文章
[Qiao, Zhonghua]的文章
[Tang, Tao]的文章
百度学术
百度学术中相似的文章
[Li, Dong]的文章
[Qiao, Zhonghua]的文章
[Tang, Tao]的文章
必应学术
必应学术中相似的文章
[Li, Dong]的文章
[Qiao, Zhonghua]的文章
[Tang, Tao]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。