科研成果详情

发表状态已发表Published
题名Time-sync video tag extraction using semantic association graph
作者
发表日期2019
发表期刊ACM Transactions on Knowledge Discovery from Data
ISSN/eISSN1556-4681/1556-472X
卷号13期号:4
摘要

Time-sync comments (TSCs) reveal a new way of extracting the online video tags. However, such TSCs have lots of noises due to users’ diverse comments, introducing great challenges for accurate and fast video tag extractions. In this article, we propose an unsupervised video tag extraction algorithm named Semantic Weight-Inverse Document Frequency (SW-IDF). Specifically, we first generate corresponding semantic association graph (SAG) using semantic similarities and timestamps of the TSCs. Second, we propose two graph cluster algorithms, i.e., dialogue-based algorithm and topic center-based algorithm, to deal with the videos with different density of comments. Third, we design a graph iteration algorithm to assign the weight to each comment based on the degrees of the clustered subgraphs, which can differentiate the meaningful comments from the noises. Finally, we gain the weight of each word by combining Semantic Weight (SW) and Inverse Document Frequency (IDF). In this way, the video tags are extracted automatically in an unsupervised way. Extensive experiments have shown that SW-IDF (dialogue-based algorithm) achieves 0.4210 F1-score and 0.4932 MAP (Mean Average Precision) in high-density comments, 0.4267 F1-score and 0.3623 MAP in low-density comments; while SW-IDF (topic center-based algorithm) achieves 0.4444 F1-score and 0.5122 MAP in high-density comments, 0.4207 F1-score and 0.3522 MAP in low-density comments. It has a better performance than the state-of-the-art unsupervised algorithms in both F1-score and MAP. © 2019 Association for Computing Machinery.

关键词Extraction
DOI10.1145/3332932
URL查看来源
收录类别SCIE ; SSCI
语种英语English
WOS研究方向Computer Science
WOS类目Computer Science, Information Systems ; Computer Science, Software Engineering
WOS记录号WOS:000496747400002
引用统计
被引频次:6[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符https://repository.uic.edu.cn/handle/39GCC9TT/1856
专题个人在本单位外知识产出
作者单位
1.Department of Computer Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
2.State Key Lab of IoT for Smart City, FST, University of Macau, Macau, 999078, China
3.Department of Electrical and Computer Engineering, University of California, Los Angeles, 90095, CA, United States
4.Department of Computer Science and Engineering, American University of Sharjah, Sharjah, United Arab Emirates
5.China Unicom Research Institute, Economic-Technological Development Area, Bldg. 2, No, 1 Beihuan East Road, Beijing, 100176, China
推荐引用方式
GB/T 7714
Yang, Wenmian,Wang, Kun,Ruan, Naet al. Time-sync video tag extraction using semantic association graph[J]. ACM Transactions on Knowledge Discovery from Data, 2019, 13(4).
APA Yang, Wenmian., Wang, Kun., Ruan, Na., Gao, Wenyuan., Jia, Weijia., .. & Zhang, Yunyong. (2019). Time-sync video tag extraction using semantic association graph. ACM Transactions on Knowledge Discovery from Data, 13(4).
MLA Yang, Wenmian,et al."Time-sync video tag extraction using semantic association graph". ACM Transactions on Knowledge Discovery from Data 13.4(2019).
条目包含的文件
条目无相关文件。
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Yang, Wenmian]的文章
[Wang, Kun]的文章
[Ruan, Na]的文章
百度学术
百度学术中相似的文章
[Yang, Wenmian]的文章
[Wang, Kun]的文章
[Ruan, Na]的文章
必应学术
必应学术中相似的文章
[Yang, Wenmian]的文章
[Wang, Kun]的文章
[Ruan, Na]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。