科研成果详情

发表状态已发表Published
题名Viscosity methods for piecewise smooth solutions to scalar conservation laws
作者
发表日期1997
发表期刊Mathematics of Computation
ISSN/eISSN0025-5718
卷号66期号:218页码:495-526
摘要

It is proved that for scalar conservation laws, if the flux function is strictly convex, and if the entropy solution is piece vise smooth with finitely many discontinuities (which includes initial central rarefaction waves, initial shocks, possible spontaneous formation of shocks in a future time and interactions of all these patterns), then the error of viscosity solution to the inviscid solution is bounded by O(ε\ log ε\ + ε) in the L1-norm, which is an improvement of the O(√ε) upper bound. If neither central rarefaction waves nor spontaneous shocks occur, the error bound is improved to O(ε).

关键词Error estimate Hyperbolic conservation laws Piecewise smooth Viscosity methods
DOI10.1090/s0025-5718-97-00822-3
URL查看来源
收录类别SCIE
语种英语English
WOS研究方向Mathematics
WOS类目Mathematics, Applied
WOS记录号WOS:A1997WV77100003
引用统计
被引频次:33[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符https://repository.uic.edu.cn/handle/39GCC9TT/2069
专题个人在本单位外知识产出
通讯作者Tang, Tao
作者单位
1.Dept. of Mathematics and Statistics, Simon Fraser University, Burnaby, BC V5A 1S6, Canada
2.Department of Mathematics, Peking University, Beijing 100871, China
推荐引用方式
GB/T 7714
Tang, Tao,Teng, Zhenhuan. Viscosity methods for piecewise smooth solutions to scalar conservation laws[J]. Mathematics of Computation, 1997, 66(218): 495-526.
APA Tang, Tao, & Teng, Zhenhuan. (1997). Viscosity methods for piecewise smooth solutions to scalar conservation laws. Mathematics of Computation, 66(218), 495-526.
MLA Tang, Tao,et al."Viscosity methods for piecewise smooth solutions to scalar conservation laws". Mathematics of Computation 66.218(1997): 495-526.
条目包含的文件
条目无相关文件。
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Tang, Tao]的文章
[Teng, Zhenhuan]的文章
百度学术
百度学术中相似的文章
[Tang, Tao]的文章
[Teng, Zhenhuan]的文章
必应学术
必应学术中相似的文章
[Tang, Tao]的文章
[Teng, Zhenhuan]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。