科研成果详情

发表状态已发表Published
题名The sharpness of kuznetsov's o(√∆x) l1-error estimate for monotone difference schemes
作者
发表日期1995
发表期刊Mathematics of Computation
ISSN/eISSN0025-5718
卷号64期号:210页码:581-589
摘要

We derive a lower error bound for monotone difference schemes to the solution of the linear advection equation with BV initial data. A rigorous analysis shows that for any monotone difference scheme the lower L1 error bound is O(√∆x), where ∆x is the spatial stepsize. © 1995 American Mathematical Society.

关键词Error estimate Lower error bound Monotone difference scheme
DOI10.1090/S0025-5718-1995-1270625-9
URL查看来源
收录类别SCIE
语种英语English
WOS研究方向Mathematics
WOS类目Mathematics, Applied
WOS记录号WOS:A1995QU15200007
Scopus入藏号2-s2.0-84968519569
引用统计
被引频次:62[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符https://repository.uic.edu.cn/handle/39GCC9TT/2117
专题个人在本单位外知识产出
作者单位
1.Department of Mathematics and Statistics, Simon Fraser University, Burnaby, BC, V5A1S6, Canada
2.Department of Mathematics, Peking University, Beijing, 100871, China
推荐引用方式
GB/T 7714
Tang, Tao,Teng, Zhenhuan. The sharpness of kuznetsov's o(√∆x) l1-error estimate for monotone difference schemes[J]. Mathematics of Computation, 1995, 64(210): 581-589.
APA Tang, Tao, & Teng, Zhenhuan. (1995). The sharpness of kuznetsov's o(√∆x) l1-error estimate for monotone difference schemes. Mathematics of Computation, 64(210), 581-589.
MLA Tang, Tao,et al."The sharpness of kuznetsov's o(√∆x) l1-error estimate for monotone difference schemes". Mathematics of Computation 64.210(1995): 581-589.
条目包含的文件
条目无相关文件。
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Tang, Tao]的文章
[Teng, Zhenhuan]的文章
百度学术
百度学术中相似的文章
[Tang, Tao]的文章
[Teng, Zhenhuan]的文章
必应学术
必应学术中相似的文章
[Tang, Tao]的文章
[Teng, Zhenhuan]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。