发表状态 | 已发表Published |
题名 | An analytical nonlinear theory of Richtmyer-Meshkov instability |
作者 | |
发表日期 | 1996 |
发表期刊 | Physics Letters, Section A: General, Atomic and Solid State Physics
![]() |
ISSN/eISSN | 0375-9601 |
卷号 | 212期号:3页码:149-155 |
摘要 | Richtmyer-Meshkov instability is a fingering instability which occurs at a material interface accelerated by a shock wave. We present an analytic, explicit prediction for the growth rate of the unstable interface. The theoretical prediction agrees, for the first time, with the experimental data on air-SF6, and is in remarkable agreement with the results of recent full nonlinear numerical simulations from early to late times. Previous theoretical predictions of the growth rate for air-SF6 unstable interfaces were about two times larger than the experimental data. |
DOI | 10.1016/0375-9601(96)00021-7 |
URL | 查看来源 |
收录类别 | SCIE |
语种 | 英语English |
WOS研究方向 | Physics |
WOS类目 | Physics, Multidisciplinary |
WOS记录号 | WOS:A1996UA62900005 |
原始文献类型 | Article |
引用统计 | |
文献类型 | 期刊论文 |
条目标识符 | https://repository.uic.edu.cn/handle/39GCC9TT/2245 |
专题 | 个人在本单位外知识产出 |
作者单位 | Dept. of Appl. Math. and Statistics, SUNY at Stony Brook, Stony Brook, NY 11794-3600, United States |
推荐引用方式 GB/T 7714 | Zhang, Qiang,Sohn, Sung-ik. An analytical nonlinear theory of Richtmyer-Meshkov instability[J]. Physics Letters, Section A: General, Atomic and Solid State Physics, 1996, 212(3): 149-155. |
APA | Zhang, Qiang, & Sohn, Sung-ik. (1996). An analytical nonlinear theory of Richtmyer-Meshkov instability. Physics Letters, Section A: General, Atomic and Solid State Physics, 212(3), 149-155. |
MLA | Zhang, Qiang,et al."An analytical nonlinear theory of Richtmyer-Meshkov instability". Physics Letters, Section A: General, Atomic and Solid State Physics 212.3(1996): 149-155. |
条目包含的文件 | 条目无相关文件。 |
个性服务 |
查看访问统计 |
谷歌学术 |
谷歌学术中相似的文章 |
[Zhang, Qiang]的文章 |
[Sohn, Sung-ik]的文章 |
百度学术 |
百度学术中相似的文章 |
[Zhang, Qiang]的文章 |
[Sohn, Sung-ik]的文章 |
必应学术 |
必应学术中相似的文章 |
[Zhang, Qiang]的文章 |
[Sohn, Sung-ik]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论