科研成果详情

发表状态已发表Published
题名Minimum aberration majorization in non-isomorphic saturated designs
作者
发表日期2004
发表期刊Journal of Statistical Planning and Inference
ISSN/eISSN0378-3758
卷号126期号:1页码:337-346
摘要

In this paper we propose a new criterion, minimum aberration majorization, for comparing non-isomorphic saturated designs. This criterion is based on the generalized word-length pattern proposed by Ma and Fang (Metrika 53 (2001) 85) and Xu and Wu (Ann. Statist. 29 (2001) 1066) and majorization theory. The criterion has been successfully applied to check non-isomorphism and rank order saturated designs. Examples are given through five non-isomorphic L16(215) designs and two L27(313) designs. © 2003 Elsevier B.V. All rights reserved.

关键词Aberration Isomorphism Majorization Saturated design
DOI10.1016/j.jspi.2003.07.015
URL查看来源
收录类别SCIE
语种英语English
WOS研究方向Mathematics
WOS类目Statistics & Probability
WOS记录号WOS:000223881300019
Scopus入藏号2-s2.0-4444330251
引用统计
被引频次:6[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符https://repository.uic.edu.cn/handle/39GCC9TT/2441
专题个人在本单位外知识产出
通讯作者Fang, Kaitai
作者单位
Department of Mathematics, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, 224 Waterloo Road, China
推荐引用方式
GB/T 7714
Fang, Kaitai,Zhang, Aijun. Minimum aberration majorization in non-isomorphic saturated designs[J]. Journal of Statistical Planning and Inference, 2004, 126(1): 337-346.
APA Fang, Kaitai, & Zhang, Aijun. (2004). Minimum aberration majorization in non-isomorphic saturated designs. Journal of Statistical Planning and Inference, 126(1), 337-346.
MLA Fang, Kaitai,et al."Minimum aberration majorization in non-isomorphic saturated designs". Journal of Statistical Planning and Inference 126.1(2004): 337-346.
条目包含的文件
条目无相关文件。
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Fang, Kaitai]的文章
[Zhang, Aijun]的文章
百度学术
百度学术中相似的文章
[Fang, Kaitai]的文章
[Zhang, Aijun]的文章
必应学术
必应学术中相似的文章
[Fang, Kaitai]的文章
[Zhang, Aijun]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。