科研成果详情

发表状态已发表Published
题名Combined perturbation bounds: II. Polar decompositions
作者
发表日期2007
发表期刊Science in China, Series A: Mathematics
ISSN/eISSN1006-9283
卷号50期号:9页码:1339-1346
摘要

In this paper, we study the perturbation bounds for the polar decomposition A = QH where Q is unitary and H is Hermitian. The optimal (asymptotic) bounds obtained in previous works for the unitary factor, the Hermitian factor and singular values of A are σ r 2 ΔQ F 2 Δ F 2 , 1/2ΔH F 2 ΔA F 2 and Δ∑ F 2 ΔA F 2 , respectively, where ∑ = diag(σ 1, σ 2, σ r , 0 ) is the singular value matrix of A and σ r denotes the smallest nonzero singular value. Here we present some new combined (asymptotic) perturbation bounds σ r 2 ΔQ F 2 +1/2 ΔH F 2 ΔA F 2 and σ r 2 Delta;Q F 2 + Δ∑ F 2 ΔA F 2 which are optimal for each factor. Some corresponding absolute perturbation bounds are also given. © 2007 Science in China Press.

关键词Perturbation Polar decomposition Singular value
DOI10.1007/s11425-007-0099-z
URL查看来源
收录类别SCIE
语种英语English
WOS研究方向Mathematics
WOS类目Mathematics, Applied ; Mathematics
WOS记录号WOS:000249379200013
引用统计
被引频次:5[WOS]   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符https://repository.uic.edu.cn/handle/39GCC9TT/3277
专题个人在本单位外知识产出
通讯作者Li, Wen
作者单位
1.School of Mathematical Sciences, South China Normal University, Guangzhou 510631, China
2.Department of Mathematics, City University of Hong Kong, Hong Kong, Hong Kong
推荐引用方式
GB/T 7714
Li, Wen,Sun, Weiwei. Combined perturbation bounds: II. Polar decompositions[J]. Science in China, Series A: Mathematics, 2007, 50(9): 1339-1346.
APA Li, Wen, & Sun, Weiwei. (2007). Combined perturbation bounds: II. Polar decompositions. Science in China, Series A: Mathematics, 50(9), 1339-1346.
MLA Li, Wen,et al."Combined perturbation bounds: II. Polar decompositions". Science in China, Series A: Mathematics 50.9(2007): 1339-1346.
条目包含的文件
条目无相关文件。
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Li, Wen]的文章
[Sun, Weiwei]的文章
百度学术
百度学术中相似的文章
[Li, Wen]的文章
[Sun, Weiwei]的文章
必应学术
必应学术中相似的文章
[Li, Wen]的文章
[Sun, Weiwei]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。