科研成果详情

题名Preserving Dynamic Attention for Long-Term Spatial-Temporal Prediction
作者
发表日期2020
会议名称26th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, KDD 2020
会议录名称Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
ISBN978-1-4503-7998-4
页码36-46
会议日期July 6 - 10, 2020
会议地点Virtual Event, CA, USA
出版者Association for Computing Machinery
摘要

Effective long-term predictions have been increasingly demanded in urban-wise data mining systems. Many practical applications, such as accident prevention and resource pre-allocation, require an extended period for preparation. However, challenges come as long-term prediction is highly error-sensitive, which becomes more critical when predicting urban-wise phenomena with complicated and dynamic spatial-temporal correlation. Specifically, since the amount of valuable correlation is limited, enormous irrelevant features introduce noises that trigger increased prediction errors. Besides, after each time step, the errors can traverse through the correlations and reach the spatial-temporal positions in every future prediction, leading to significant error propagation. To address these issues, we propose a Dynamic Switch-Attention Network (DSAN) with a novel Multi-Space Attention (MSA) mechanism that measures the correlations between inputs and outputs explicitly. To filter out irrelevant noises and alleviate the error propagation, DSAN dynamically extracts valuable information by applying self-attention over the noisy input and bridges each output directly to the purified inputs via implementing a switch-attention mechanism. Through extensive experiments on two spatial-temporal prediction tasks, we demonstrate the superior advantage of DSAN in both short-term and long-term predictions. The source code can be obtained from https://github.com/hxstarklin/DSAN. © 2020 Owner/Author.

关键词attention mechanism long-term prediction mining spatial-temporal information neural network
DOI10.1145/3394486.3403046
URL查看来源
收录类别CPCI-S
语种英语English
WOS研究方向Computer Science
WOS类目Computer Science ; Artificial Intelligence ; Computer Science, Information Systems ; Computer Science, Theory & Methods
WOS记录号WOS:000749552300005
引用统计
被引频次:40[WOS]   [WOS记录]     [WOS相关记录]
文献类型会议论文
条目标识符https://repository.uic.edu.cn/handle/39GCC9TT/4466
专题研究生院
作者单位
1.State Key Lab of IoTSC FST, University of Macau, Macau, China
2.Joint AI and Future Network Research Institute, BNU (Zhuhai) & UIC IoTSC, University of Macau, Macau
3.Shanghai Jiaotong University, China
推荐引用方式
GB/T 7714
Lin, Haoxing,Bai, Rufan,Jia, Weijiaet al. Preserving Dynamic Attention for Long-Term Spatial-Temporal Prediction[C]: Association for Computing Machinery, 2020: 36-46.
条目包含的文件
条目无相关文件。
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Lin, Haoxing]的文章
[Bai, Rufan]的文章
[Jia, Weijia]的文章
百度学术
百度学术中相似的文章
[Lin, Haoxing]的文章
[Bai, Rufan]的文章
[Jia, Weijia]的文章
必应学术
必应学术中相似的文章
[Lin, Haoxing]的文章
[Bai, Rufan]的文章
[Jia, Weijia]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。