科研成果详情

题名A new intuitionistic fuzzy rough set approach for decision support
作者
发表日期2012
会议名称7th International Conference on Rough Sets and Knowledge Technology, RSKT 2012
会议录名称Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
ISBN9783642318993
ISSN1611-3349
卷号7414 LNAI
页码71-80
会议日期17-20 August 2012
会议地点Chengdu
摘要

The rough set theory was proved of its effectiveness in dealing with the imprecise and ambiguous information. Dominance-based Rough Set Approach (DRSA), as one of the extensions, is effective and fundamentally important for Multiple Criteria Decision Analysis (MCDA). However, most of existing DRSA models cannot directly examine uncertain information within rough boundary regions, which might miss the significant knowledge for decision support. In this paper, we propose a new believe factor in terms of an intuitionistic fuzzy value as foundation, further to induce a kind of new uncertain rule, called believable rules, for better performance in decision-making. We provide an example to demonstrate the effectiveness of the proposed approach in multicriteria sorting and also a comparison with existing representative DRSA models. © 2012 Springer-Verlag.

关键词Intuitionistic fuzzy set Multicriteria decision analysis Rough set Rule-based approach Sorting
DOI10.1007/978-3-642-31900-6_10
URL查看来源
语种英语English
引用统计
被引频次[WOS]:0   [WOS记录]     [WOS相关记录]
文献类型会议论文
条目标识符https://repository.uic.edu.cn/handle/39GCC9TT/4684
专题个人在本单位外知识产出
通讯作者Chai, Junyi
作者单位
Department of Computing, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
推荐引用方式
GB/T 7714
Chai, Junyi,Liu, James Nga Kwok,Li, Anming. A new intuitionistic fuzzy rough set approach for decision support[C], 2012: 71-80.
条目包含的文件
条目无相关文件。
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Chai, Junyi]的文章
[Liu, James Nga Kwok]的文章
[Li, Anming]的文章
百度学术
百度学术中相似的文章
[Chai, Junyi]的文章
[Liu, James Nga Kwok]的文章
[Li, Anming]的文章
必应学术
必应学术中相似的文章
[Chai, Junyi]的文章
[Liu, James Nga Kwok]的文章
[Li, Anming]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。