题名 | The Scaling Laws for Fluid Mixing |
作者 | |
发表日期 | 1994 |
会议名称 | The Eleventh Army Conference on Applied Mathematics and Computing |
会议录名称 | Transactions of The Eleventh Army Conference on Applied Mathematics and Computing
![]() |
页码 | 261-271 |
会议日期 | 8-10 June 1993 |
会议地点 | Pittsburgh, Pennsylvania, USA |
摘要 | We have developed a quantitative theory for the mixing of fluids induced by a random velocity field. The theory provides a quantitative prediction for the growth of the mixing region. There are three distinct regimes for the asymptotic scaling behavior of the mixing layer, depending on the asymptotic behavior of the random velocity field. The asymptotic diffusion is Fickian when the correlation function of the random field decays rapidly at large length scales. Otherwise the asymptotic diffusion is non-Fickian. The scaling behavior of the mixing layer driven by a general random velocity field is determined over all length scales. Our results show that, in general, the scaling exponent of the mixing layer is nonFickian on all finite length scales. In the Lagrangian picture, due to the non-linearity of the effective dynamical equation derived from the Taylor diffusion theory, the mixing layer is not a fractal even if the random velocity field is a fractal. |
语种 | 英语English |
引用统计 | |
文献类型 | 会议论文 |
条目标识符 | https://repository.uic.edu.cn/handle/39GCC9TT/4938 |
专题 | 个人在本单位外知识产出 |
作者单位 | Department of Applied Mathematics and Statistics, State University of New York at Stony Brook, Stony Brook, NY 11794-3600 |
推荐引用方式 GB/T 7714 | Zhang, Qiang,Glimm, James. The Scaling Laws for Fluid Mixing[C], 1994: 261-271. |
条目包含的文件 | 条目无相关文件。 |
个性服务 |
查看访问统计 |
谷歌学术 |
谷歌学术中相似的文章 |
[Zhang, Qiang]的文章 |
[Glimm, James]的文章 |
百度学术 |
百度学术中相似的文章 |
[Zhang, Qiang]的文章 |
[Glimm, James]的文章 |
必应学术 |
必应学术中相似的文章 |
[Zhang, Qiang]的文章 |
[Glimm, James]的文章 |
相关权益政策 |
暂无数据 |
收藏/分享 |
除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。
修改评论