科研成果详情

题名The Scaling Laws for Fluid Mixing
作者
发表日期1994
会议名称The Eleventh Army Conference on Applied Mathematics and Computing
会议录名称Transactions of The Eleventh Army Conference on Applied Mathematics and Computing
页码261-271
会议日期8-10 June 1993
会议地点Pittsburgh, Pennsylvania, USA
摘要

We have developed a quantitative theory for the mixing of fluids induced by a random velocity field. The theory provides a quantitative prediction for the growth of the mixing region. There are three distinct regimes for the asymptotic scaling behavior of the mixing layer, depending on the asymptotic behavior of the random velocity field. The asymptotic diffusion is Fickian when the correlation function of the random field decays rapidly at large length scales. Otherwise the asymptotic diffusion is non-Fickian. The scaling behavior of the mixing layer driven by a general random velocity field is determined over all length scales. Our results show that, in general, the scaling exponent of the mixing layer is nonFickian on all finite length scales. In the Lagrangian picture, due to the non-linearity of the effective dynamical equation derived from the Taylor diffusion theory, the mixing layer is not a fractal even if the random velocity field is a fractal.

语种英语English
引用统计
文献类型会议论文
条目标识符https://repository.uic.edu.cn/handle/39GCC9TT/4938
专题个人在本单位外知识产出
作者单位
Department of Applied Mathematics and Statistics, State University of New York at Stony Brook, Stony Brook, NY 11794-3600
推荐引用方式
GB/T 7714
Zhang, Qiang,Glimm, James. The Scaling Laws for Fluid Mixing[C], 1994: 261-271.
条目包含的文件
条目无相关文件。
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Zhang, Qiang]的文章
[Glimm, James]的文章
百度学术
百度学术中相似的文章
[Zhang, Qiang]的文章
[Glimm, James]的文章
必应学术
必应学术中相似的文章
[Zhang, Qiang]的文章
[Glimm, James]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。