科研成果详情

发表状态已发表Published
题名Construction of E (fNOD)-Optimal Supersaturated Designs VIA Room Squares
作者
发表日期2002
发表期刊Calcutta Statistical Association Bulletin
卷号52页码:71–84
摘要

Supersaturated design is essentially a fractional factorial in which the number of potential effects is greater than the number of runs. And Room square is an important object in combinatorial design theory. We show a link between these two apparently unrelated kinds of designs. E (fNOD) criterion for comparing supersaturated designs is proposed and a lower bound of E (fNOD) is obtained as a benchmark of design optimality. It is shown that the E (fNOD) criterion is an extension of the popular E(s2) and ave x2 criterion (for two- and three-level supersaturated designs respectively). A new construction method for multi-level supersaturated designs via Room squares is also proposed and some properties of the resulting designs are investigated.

关键词E (fNOD)-optimal Room square Supersaturated design U-type design
DOI10.1177/0008068320020503
URL查看来源
语种英语English
引用统计
被引频次[WOS]:0   [WOS记录]     [WOS相关记录]
文献类型期刊论文
条目标识符https://repository.uic.edu.cn/handle/39GCC9TT/5171
专题个人在本单位外知识产出
作者单位
1.Hong Kong Baptist University, Hong Kong, China
2.Suzhou University, Suzhou, China
3.Tianjin University, Tianjin, China
推荐引用方式
GB/T 7714
Fang, Kaitai,Ge, Gennian,Liu, Minqian. Construction of E (fNOD)-Optimal Supersaturated Designs VIA Room Squares[J]. Calcutta Statistical Association Bulletin, 2002, 52: 71–84.
APA Fang, Kaitai, Ge, Gennian, & Liu, Minqian. (2002). Construction of E (fNOD)-Optimal Supersaturated Designs VIA Room Squares. Calcutta Statistical Association Bulletin, 52, 71–84.
MLA Fang, Kaitai,et al."Construction of E (fNOD)-Optimal Supersaturated Designs VIA Room Squares". Calcutta Statistical Association Bulletin 52(2002): 71–84.
条目包含的文件
条目无相关文件。
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Fang, Kaitai]的文章
[Ge, Gennian]的文章
[Liu, Minqian]的文章
百度学术
百度学术中相似的文章
[Fang, Kaitai]的文章
[Ge, Gennian]的文章
[Liu, Minqian]的文章
必应学术
必应学术中相似的文章
[Fang, Kaitai]的文章
[Ge, Gennian]的文章
[Liu, Minqian]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。