科研成果详情

题名Walking on the Road to the Statistical Pyramid
作者
出版日期2020-05
来源专著Contemporary Experimental Design, Multivariate Analysis and Data Mining
ISBN978-3-030-46160-7
源著作者/编者Jianqing Fan, Jianxin Pan
出版地USA
出版者Springer, Cham
页码3-15
摘要

This paper reviews Prof. Kai-Tai Fang’s major contribution to multivariate statistics in three aspects: generalized multivariate statistics; general symmetric multivariate distributions; growth curve models and miscellaneous fields. Generalized multivariate statistics is a large extension of traditional statistics with normal assumption. It aims to generalize the traditional statistical methodologies like parametric estimation, hypothesis testing, and modeling to a much wider family of multivariate distributions, which is called elliptically contoured distributions (ECD). General symmetric multivariate distributions form an even wider class of multivariate probability distributions that includes the ECD as its special case. Growth curve models (GCM) includes statistical methods that allow for consideration of inter-individual variability in intra-individual patterns of change over time. Outlier detection and identification of influential observations are important topics in the area of the GCM. Miscellaneous fields cover major contributions that Prof. Fang made in various areas of multivariate statistics beyond the three aspects mentioned above.

语种英语English
DOI10.1007/978-3-030-46161-4_1
引用统计
被引频次[WOS]:0   [WOS记录]     [WOS相关记录]
文献类型著作章节
条目标识符https://repository.uic.edu.cn/handle/39GCC9TT/5327
专题个人在本单位外知识产出
作者单位
1.University of ManchesterManchesterUK
2.University of New HavenWest HavenUSA
3.Southern University of Science and TechnologyShenzhenChina
推荐引用方式
GB/T 7714
Jianxin Pan,Jiajuan Liang,Guoliang Tian. Walking on the Road to the Statistical Pyramid. USA: Springer, Cham, 2020: 3-15.
条目包含的文件
条目无相关文件。
个性服务
查看访问统计
谷歌学术
谷歌学术中相似的文章
[Jianxin Pan]的文章
[Jiajuan Liang]的文章
[Guoliang Tian]的文章
百度学术
百度学术中相似的文章
[Jianxin Pan]的文章
[Jiajuan Liang]的文章
[Guoliang Tian]的文章
必应学术
必应学术中相似的文章
[Jianxin Pan]的文章
[Jiajuan Liang]的文章
[Guoliang Tian]的文章
相关权益政策
暂无数据
收藏/分享
所有评论 (0)
暂无评论
 

除非特别说明,本系统中所有内容都受版权保护,并保留所有权利。